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1. Introduction

Angular momentum plays a central role in both classical and @mtum mechanics. In
classical mechanics, all isolated systems conserve angat@mentum (as well as energy and
linear momentum); this fact reduces considerably the amotaf work required in calculating
trajectories of planets, rotation of rigid bodies, and manynore.

Similarly, in quantum mechanics, angular momentum plays aeatral role in under-
standing the structure of atoms, as well as other quantum pbéems that involve rotational
symmetry.

Like other observable quantities, angular momentum is de#ged in QM by an operator.
This is in fact a vector operator, similar to momentum operair. However, as we will
shortly see, contrary to the linear momentum operator, theiree components of the angular
momentum operator do not commute.

In QM, there are several angular momentum operators: the tak angular momentum
(usually denoted by J), the orbital angular momentum (usually denoted byLC) and the
intrinsic, or spin angular momentum (denoted byS). This last one (spin) has no classical
analogue. Confusingly, the term \angular momentum™ can ref to either the total angular
momentum, or to the orbital angular momentum.

The classical de nition of the orbital angular momentum,C = + { can be carried
directly to QM by reinterpreting + and p as the operators associated with the position and
the linear momentum.

The spin operator, S, represents another type of angular momentum, associatedthv
\intrinsic rotation" of a particle around an axis; Spin is anintrinsic property of a particle
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(nearly all elementary particles have spin), that is unreked to its spatial motion. The
existence of spin angular momentum is inferred from experants, such as the Stern-Gerlach
experiment, in which particles are observed to possess algumomentum that cannot be
accounted for by orbital angular momentum alone.

The total angular momentum,J, combines both the spin and orbital angular momentum
of a particle (or a system), namely\d = LC + S.

2. Orbital angular momentum

Consider a particle of massn, momentum p and position vector+ (with respect to a
xed origin, +=0). In classical mechanics, the particle's orbital angulamomentum is given
by a vectorC, de ned by

C=+ ¢ Q)

This vector points in a direction that is perpendicular to the plane containing+ and
and has a magnitudeL = rpsin , where is the angle betweenr and p. In Cartesian
coordinates, the components df are

Ly =yp. zp;
Ly = zpc  Xpz; (2)
L, = Xpy Yyp:

The corresponding QM operators representing,, Ly and L, are obtained by replacing
X, Yy, z and py, p, and p, with the corresponding QM operators, giving

- . y@ @

Ly= 1 Yoz z@y :
—_ . @ @ .

Ly = i~ zg, Xg,; 3)
- . y@ @

L,= i x@y Y @x

In a more compact form, this can be written as aector operator
C= i~ r): 4)
It is easy to verify that C is Hermitian.

Using the commutation relations derived fos and g, the commutation relations between
the di erent components ofC are readily derived. For example:

L Lyl =[(YR:  zpy);(zpe  XP)l = [yPz:zpd + [zpysxp2]  [ypzixpz]l  [zpyizk]  (5)
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Sincey and p, commute with each other and withz and p,, the rst term reads

YRz ZB] = YPZP«  ZPeYP: = Y[Rz Z] = i~ypx (6)

Similarly, the second commutator gives

[zpy; Xpz] = ZpyXP:  XP.Zpy = Xpy[Z; p.] = i~Xpy (7)

The third and forth commutators vanish; we thus nd that

L Lyl = i~(xpy yp) = i~Lz: (8)

In a similar way, it is straightforward to show that

[Ly;Lz] = i~Ly (9)
and

Lo L] =i~Ly (20)
The three equations are equivalent to the vectorial commuti@an relation:

C C=i~C (12)
Note that this can only be true for operators; since, for regat vectors, clearlyC L[ =0.

The fact that the operators representing the di erent compoents of the angular momen-
tum do not commute, implies that it is impossible to obtain denite values for all component
of the angular momentum when measured simultaneously. Thiseans that if the system
is in eigenstate of one component of the angular momentum, Will in general not be an
eigenstate of either of the other two components.

We de ne the operator representing the square of the magnitie of the orbital angular
momentum by
2= L+ Li+LE (12)

It is easy to show thatC? does commute with each of the three componentsy, Ly orL,.
For example (using [2; L] = 0):

[C? Ly]

[Ly+ L5 L =[La L] + L35 L]
Ly[l—y;l—x]+[|—y;|—x]|—y + L[l L] + L, Li]L, (13)
i~(LyL, + L,Ly)+ i~(L,Ly+ LyL,)=0:

Similarly,
[C%Ly]=[C%L.]=0; (14)
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which can be summarized as

[C2:C]=0: (15)
Physically, this means that one can nd simultaneous eigemifictions of C? and one of the
components ofC, implying that both the magnitude of the angular momentum ad one of
its components can be precisely determined. Once these ar@kn, they fully specify the
angular momentum.

In order to obtain the eigenvalues of? and one of the components df (typically, L),
it is convenient to express the angular momentum operatora spherical polar coordinates:
r, ; , rather than the Cartesian coordinates, y, z. The spherical coordinates are related

to the Cartesian ones via
X = rsin cos ;

y=rsin sin ; (16)
Z=rcCoS:
After some algebra, one gets:
Ly= i~ sin @ cot cos 2
Ly= i~ cos & cot sin & 17
L= i~g" i
2= 2 A 8sin @+ g

We thus nd that the operators Ly, Ly, L, and C? depend on and only, that is they
are independent on the radial coordinate. All these operators therefore commute with any

function of r,
L (I =[Ly; f (NI =[Lgf(r)]=[L%f(r)]=0: (18)

Also, obviously, if a wavefunction dependsnly onr (butnoton , )it can be simultaneously
an eigenfunction ofL, Ly, L, and L2. In all cases, the corresponding eigenvalue will be
0. (This is the only exception to the rule that that eigenvales of one component (e.gL )
cannot be simultaneously eigenfunctions of the two other mgponents ofL).

3. Eigenvalues and eigenfunctions of L 2 and L,

Let us nd now the common eigenfunctions toL? and L,, for a single particle. The
choice ofL, (rather than, e.g.,Ly) is motivated by the simpler expression (see Equation 17).
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3.1. Eigenvalues of L,

Since, in spherical coordinatet, depends only on , we can denote its eigenvalue by
m~ and the corresponding eigenfunctions by, ( ). We thus have:

L; m()=m~ n(); (19)
namely

@
@ m

()=m n(): (20)

The solutions to this equation are
— 1 im .
m( )= p?e : (21)

This is satis ed for any value ofm; however, physically we require the wave function to be
single valued(alternatively: continuoug, namely (2 )= (0), from which we nd

e2m =1: (22)

This equation is satised form =0; 1, 2, 3;::. The eigenvalues of the operatoL, are

thus m~, with m being integer (positive or negative) or zero. The numben is called the

magnetic quantum number , due to the role it plays in the motion of charged particles
in magnetic elds.

This means, that when measuring the-component of an orbital angular momentum,
one can only obtain @ ~; 2~;::. Since the choice of the direction was arbitrary, we see
that the component of the orbital angular momentum aboutny axis is quantized.

The wavefunctions ,( ) are orthonormal, namely
Z 2
20) m()d = e (23)

Furthermore, they form a complete set, namely every functiof ( ) can be written as

X1
f()= am m( ); (24)

m=1

where the coe cients a,, are C-numbers.
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3.2. Simultaneous eigenvalues of L 2 and L,

Let us denote simultaneous eigenfunctions of the operatb? and L, asY,(; ). We
will write the eigenvalues ofL2 asl(l + 1) ~? (from reason which will become clear shortly).
We then have:

L3im (5 )= 10+ 1) ~Yim (5 ) (25)
and
I-zYIm( ; ) = rn"'Ylm( ; ) (26)
Comparing equation 26 and equation 19, we see that we can s&pa Y, (; ),
Ylm(; ): Im() m( ) (27)

where the functions () are given by Equation 21, n( )= p3-€™ .

Using the expression fot_2 in spherical coordinates (Equation 17), we write Equation

25 as L e 1@ L @
—— ——— +t ———— Yin(; )= (I+D)Ym(; ) 2
sih @ sin @ si? @2 m(; ) (I+1)Yim(; ) (28)

Using the variable separation, as well as equation 21 fog,( ), Equation 28 becomes

te 1@ m*

+ + =
sin @ sin @ I(+1) sin? m()=0 (29)
This equation is not easy to solve. In order to proceed, we aige variable, writing
w=cos andF,(w)= n( ). Equation 29 becomes
d? d m?
2 —_— —_— =
1 w G2 2WdW +1(1+1) " Fim(w) =0 (30)

This equation is known in mathematics as théegendre's associated di erential equa-
tion (the m = 0 case is simply calledLegendre's di erential equation ), honoring the
French mathematicianAdrien-Marie Legendre.

The solutions to this equation are given by theassociated Legendre's functions
P"j(w), which are de ned by
imj

m = 2\jmj=2 = .

PI(w)= (1 w2 Py(w); (31)

whereP,(w) is known as thelth Legendre polynomial , which is de ned by the Rodrigues
formula ,

d |

1
1 dw

Pi(w)= 5~

o (w? 1) (32)
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(Note that for m =0, P2(w) = P;(w)).

In order for Rodrigues formula to make sensd, must be non-negative integer.
Moreover, if jmj > |, then Equation 31 impliesP/™ = 0. Thus, the physically accepted
values ofl and m are

1=0;1,2::

m= 1, [+1;: 20 L0520 Ll (33)
This result can be understood physically as follows: Sinté = LZ+ L7+ L7, the expectation
value of L? in a given state is hL? = hLZi + HLZi + hLZi. Sincel, and L, are Hermitian,
hLZzi  OandhLii 0, and therefore

h2i h L2 (34)

For a state such that its angular part is an eigenfunction ofboth L2 and L ,, we thus have
from Equations 25, 26 and 34
I1+1) m? (35)

from which the result in Equation 33, namely thatm is restricted tojmj | follows. The
guantum number |, whose allowed values are given in Equation 33, is called tbebital
angular momentum quantum number

By using Rodrigues formula (Equation 32), one can immedidie nd the rst few Leg-
endre Polynomials:

Po(w) = 1;
Piw)= 14 (w? 1)=w;

Po(w) = 2(3w? 1);

Ps(w) = 2 (5w® 3w);

Ps(w) = £(35w* 30w? +3);
Ps(w) = £(63w® 70w+ 15w);

(36)

and so on.

Using Equation 31, one can determine the associated Legenslifeinctions, P". The
rst few are (inserting againw = cos ):

Py =1,

P2 =cos ; Pl =sin( );

P?=1(@Bcosg 1); Pl =3sin cos ; P2 =3sin? ;

P{=1(5cos$ 3cos); Pi=2sin (5co$ 1); PZ=15sin* cos; P$=15sin’ ;

(37)
etc.
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Fig. 1.| Polar plots of r =abs[P™( )] as a function of .
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Plots of the rst few associated Legendre function®?™( ) are shown in Figure 1.

Using Rodrigues formula and integrating by parts, one can sWothat the associated
Legendre's functions,P™ are orthogonal to each other, butare not normalizedto unity,
namely: Z ., 2 (s i)

jmj imj — :
) dwP ™ (W)Pyo *(w) = A+1( ] mj o
However, with the use of Equation 38, one can multipl?," (w) with the appropriate normal-
ization factor, and obtain a normalized solutiorF,, (w) to Equation 30 - up to an uncertain
phase factor of modulus 1.

(38)

The corresponding physical solutions to equation 29,,, ( ) are given by

8 h 21+1) (I |i 1=2
m( )=, ¢ 2)(|+m' PM™(cos ); m O (39)
. ( 1) |JmJ( ) m< O
These functions are normalized, namely
Z
I?Om() m()sin()d = o (40)

0

We can now ( nally) write the simultaneous eigenfunctionsY,,(; ) common to the
operatorsL? and L, (see equations 25 and 26) as
8

h -12
Y ()= ( pm e (' ™ PM(cos )é™ ; m 0
m ]

+m)!

( D™Y7 m(' ) m< O:

(41)

(where we have adopted the commonly use convention for thegde). These functions are
known asspherical harmonics .

The spherical harmonics are normalized to unity on a unit sgre, and are orthogonal:

z z, 4
YIgmo( ; )Ylm( , )d d d Sin( )Y|gm0( ; )Ylm( ; ): 10 mm?© (42)

0 0
They further form a complete set , namely, every (arbitrary) functionf = f(; ) can be

expanded as
X X!
f(; )= amYim(; ) (43)

I=0 m= |

The lowest order spherical harmonics are summarized in tabl.
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I m Ym(; ) |
0 Yoo= Pi:
1 0 Y= & % cos
1 Y= & “sine
2 0 Ypo= - (3c08 1)
1 Yo 1= 8 “sin cose
2 Yy = 2 2 si? e 2
3 0 Yso= ;- Y (5co$  3cos)
1 Yy 1= 2 sin (5c0¢  1)e'!
2 Y3 .= 22 s cose 2
3 Y3 3= 2 Psind e 3

Table 1: The rst few spherical harmonics,Y, .

3.3. The angular momentum ladder operators

Let us study the e ect of the operatorsL, and L, on the eigenfunctionsY,,. For this
purpose, it is convenient to introduce the two operators:

L =Ly iLy: (44)

These operators areot Hermitian, but are mutually adjoint, since LY = L, iLy =L
andLY = L, + iLy = L+ (and we used the fact thatL, and L, are Hermitian).

Since bothL and L, commute with L2, so doL ,

[L%L ]=0: (45)

Using the commutation relations between the components of éhangular momentum
(Equations 8 - 10), it is straightforward to show that the ladler operatorsL. andL satisfy:

LL =L% L2 ~Lg (46)
Lol ]=2~L (47)
L;L ]= ~L: (48)

Equation 48 can be used with the eigenvalue Equation 26 to @b

Lo2(L Yim)=(m 1)~(L Yim) (49)
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Similarly, using the fact that L commute with L?, from Equation 25 we have

LEL Yim) = 10+ 1) ~*(L Yim) (50)

This implies that when acting on the common eigenfunctiory,,, of L? and L, the
operator L, produces a new common eigenfunction, for which the eigenvalofL? does not
change, (remaind(l + 1)~?), but the eigenvalue ofL, increases by~, to become (n + 1) ~.
Similarly, L Y, is a simultaneous eigenfunction of 2 and L, with eigenvalues!(l + 1) ~?
and (m 1)~. This explains their names +aising and lowering operators.

We therefore nd that
L Yim = C|mYI;m 1) (51)

where C,,, are constants, whose value we want to nd. To determine the @e of these
constants, we return to Equation 17, and writel  in spherical polar coordinates,

i @ .cos @
L =-~e @+ 'ﬁ@ (52)
This can be applied to the functionsY),, derived above. The result is
L Yim(; )= ~1(0+1) mm IV 1(; ) (53)

Let us switch now to Dirac's notation. In this notation, the tate described by the
spherical harmonicY,, (; ) is denoted by the ketjl; mi.

The expectation values ofL are zero: this follows from the orthonormality of the
spherical harmonics, which can be written ad; mjI>m% = 0 pmo:

H:mjL jimi=~[I(+1) m(m 1*?H;mjl;m 1 =0: (54)

UsingLx = (L. + L )and Ly = 2(L. L ), this result implies that the expectation
valueshLyi = hLyi = 0. On the other hand,
: . .1
hZi=hli=Hh? L= é[l(l +1) m?~% (55)
Interestingly, even whenm = | - the orbital angular momentum is \parallel* or \anti-
parallel" to the z-axis, its x- and y- components are still not zero, although the average
values ofL, and Ly vanish.
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4. Schedinger equation in three dimensions, central pote ntial

The knowledge we gained on angular momentum is particularlyseful when treating
real life problems. As our world is three dimensional, we ne¢al generalize the treatment of
Schmedinger equation to 3-d.

The time-independent Schredinger equation becomes

2

2 -
%r +V =E (56)
where, in 3-d, @ @ @
2 .
re= @+ @—9+ ar (57)

In many problems in physics, the potential ientral , namely,V = V (r); this means
that the potential is spherically symmetric , and is not a function of or . In this type
of systems - the best representative may be the hydrogen atdmbe discussed shortly, it is
best to work in spherical coordinatest; ;

In spherical coordinates, the laplacian becomes

rzzi_@ rz_@o +L_@ sin _@ +# @

rr@r @r r2sin @ @ r2sir @2

Comparing to Equation 17, we see that the last two terms of théaplacian are equal to
L2=~2r2, Thus, we can write the Hamiltonian as

2 1 @ 2@ L2

(58)

2
— oy 2 - N R -
R = ST 2EV(D = o “or " ar e + V() (59)
and the time-independent Schredinger equation is
2 2
L0 2@ v i )=E @) (60)

2m r2@r @r  ~2r2
In order to proceed, we note that all of the angular momentumperators: Ly, Ly, L, and
L2 do not operate on the radial variabley; this can be seen directly by their description in
spherical coordinates, equation 17. This means that all tee operators commute with/ (r):

[L,;V(r)] =0, etc. Furthermore, sinceLy, L, and L, commute with L2, we conclude that
all of the angular momentum operators commute with the Hamitinian,

[ﬁ;Lx]z[ﬁ;Ly]:[ﬁ;Lz]:[ﬁ;LZ]:O (61)
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This means that it is possible to obtain solutions to Schreidiger equation (Equation 60)
which are common eigenfunctions df, L2 and L,.

We already know simultaneous eigenfunctions @f?> and L,: these are of course the
spherical harmonics)Y; (; ). Thus, a full solution to Schredinger equation can be wrien
as

(n s )= Re()Ym(; ): (62)

Rg (r) is a radial function ofr, which we need to nd. The subscriptsE and | mark the fact
that in general, we obtain di erent functions for di erent values of the energyi) and the
orbital angular momentum quantum numberl. It is independent, though, on the magnetic
guantum numberm, as can be seen by inserting this solution into Schredingexquation (in
which the operatorL? appears explicitly, but not L,).

We may put the solution in Equation (62) in Schredinger equaon (60), and use the
fact that L2Ym(; )= 1(1+1)~*Ym(; ) (Equation 25), to obtain an equation forRg (r),

2 @ 2@ I(l +1)~2
— ——+ —-= + =~ 4 =
o’m @? r @r 2mr 2 V(r) RE| (r) ERE| (r) (63)
To be physically acceptable, the wave functions must be sqeaintegrable, and normal-
ized to 1: Z, 7 Z,
drr?  d sin dijem(;; )Z=1: (64)
0 0 0
We already know that the spherical part,Y,(; ) is normalized; see Equation 42. Thus,
the radial part of the eigenfunctions must satisfy the normiation condition
Z 1

drr?jRg (r)j? = 1: (65)
0

We may further simplify Equation 63 by changing a variable,
Ugi(r) = rRg(r) (66)
Thus, R = u=r, dR=dr = [r(du=dr) u]=r?>,and & r?& 4= 1%. Overall, Equation 63

rZ@r r r
becomes
~2 dPug

om a2 T Vest (M) Uei (r) = Eug(r) (67)
where
Vot () = V(ry + D= (68)
eff omr 2
is an e ective potential ; in addition to the interaction potential, V(r) it contains a re-

pulsive centrifugal barrier , (<>=2m)[(I(I + 1) =r?].
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With the inclusion of this potential, Equation 67 has an idetical form to the 1-d (time-
independent) Schredinger equation. The only di erence ishat it is physically meaningful
only for r > 0, and we must provide the boundary condition ar = 0. The boundary
conditions are provided by the physical requirement that tha function Rg, (r) remains nite
at the origin, r = 0. Since Rg| (r) = ug (r)=r, this implies

ug (0) = 0: (69)

5. The hydrogen atom

Perhaps the most important demonstration of the above anadys (and of quantum
mechanics in general) is the ability to predict the energy Wels and wave functions of the
hydrogen atom. This is the simplest atom, that contains onerpton and one electron. The
proton is heavy (n,=m. = 1836) and is essentially motionless - we can assume it beiag
the origin, r = 0). The proton has a positive charge ¥, and the electron a negative charge,

g We can therefore use Coulumb'’s law to calculate the poteatienergy:
¢ 1

V(r) = T or (70)

(in SI units).
The radial equation (67) becomes:

S, 1 11+
2m dr2 4 or 2mr?2

ugi(r) = Eug(r) (71)

Before proceeding to solve this equation, we note the followg. At r '1 |, Ve (r) ! 0.
This means that for any value of positive energyH > 0), one could nd an acceptable eigen-
function ug (r). Therefore, there is acontinuous spectrumfor E > 0, describing scattering
between electron and proton (this will be dealt with in next gar's QM...). We focus here
on solutions for whichE < 0. These are calledbound states .

We proceed by some change of variables: We write

P
2mE
= (12)
(note that E < 0, and so isreal). Equation 71 becomes
2 2 +
izd Ugl _ 1 mq N (1 +1) (73)

dr2 2 o2 7r oz Ul
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We next introduce

maq?
=r; = 74
r= o 2 2 (74)
and write Equation 73 as
d?u (1 +1)
. 5' =1 2+ 5 Ug| (75)

We proceed along lines which are somewhat similar to thosekéan in deriving the SHO.
We begin by examining the asymptotic behavior. We note thatthen !'1 , Equation 75
is approximately d?ug;=d >  ug, which admits the general solution

ui )= Ae + Be:

However, in order forug, to remain nite as ! 1 , we must demandB = 0, implying
ugi( ) Ae

On the other hand, as ! 0, the centrifugal term dominates (apart when = 0, but,
as will be seen, the result is valid there too), and one can \ei

dug  1(1+1)
d 2 2 UEl

with the general solution
u()=c " +D

Again, the second term, ' divergesas ! 0, implying that we must demandD = 0. Thus,
ugi() C I
for small .

This discussion motivates another change of variables, wtinig

uer()= e v() (76)
wherev( ) vg ( ), and the subscriptsEl are omitted for clarity.
With this change of variables, we have

Q_|Q.
[

e (I+1 v+ S—V

and

o
™o
c

I(1+1 dv = d?v
+ ( ) v+2(1+1 )d—+ -

o
N
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and Equation 75 becomes

2
Noon+1 Y Var, 20+1v=o0: 77
d? d
We search for solutionv( ) is terms of power series:
X .
v()= g (78)
j=0
We can thus write:
dv_ X i1 X j
g - e’ = (+Dga ’ (79)
j=0 j=0
and
v X i1
I j0 +1)ga (80)

j=0
similar to the analysis of the SHO, we insert these results mtEquation 77, and equate the
coe cients of each individual power law of to write:

J(J+1)C]+1+2(|+1)(]+1)C]+1 2jCj+[ 0 2(|+1)]C] =0;

> B AR I
G T +21+2)

Similar to the SHO case, we note that fof f |; (g we have

(81)

2
G 76
J
- P . .
which givesg = (2/=j!)co, and v( ) = ¢ 12—’, I = ¢u€? , from whichu( ) = ¢ '*'e ; this
of course is unacceptable, as it diverges at large

This means that the seriesnust terminate , namely there is a maximum integerj max
for which ¢, +1y = 0. From Equation 81 this gives

2(max + 1 +1) 0=0: (82)
We can now de ne theprinciple quantum number, n via
N jmax + 1 +1: (83)
Thus, ¢=2n. But  determines the energy via equations 72 and 74:

2 2 mq4
E= = : (84)
2m 8 23~272
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We therefore conclude that the allowed energies are

1
E,= — — n—' n=1;23;:: (85)

This is the well-known Bohr's formula

Using again equation 74, one nds
= —; (86)

where

=5:29 10 ''m (87)

is known as theBohr's radius .

The ground state (namely, the state of lowest energy) is obtained by putting = 1 in
Equation 85. Putting the values of the physical constants,m@ nds that

2
= M@ T L japev (88)

This is the binding energy of the hydrogen atom - the amount of energy one needs to give
to the electron in the hydrogen atom that is in its ground stag to ionize the atom (=release
the electron).

Furthermore, E, = E;=22 = E;=4 = 34 eV, etc.

5.1. The wavefunctions
Returning to Equation 62, the wavefunctions are given by
(s )= Ra()Ym(; )
where (using Equations 66 and 76)
— 1 1+1 .
Rer(r) = — e v(): (89)

Here,v( ) is given by the polynomial of degre¢n.x = n | 1 (see Equation 83).
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In the ground state , n = 1; Equation 83 forcesl = 0 and jax = 0. Sincel =0, we
known that m = 0 as well (see Equation 35). This means that the wave functmis given by

100 = Rio(r)Yoo(; ) (90)

Using the recursion formula (Equation 81), withj = 0, leads toc; = 0; that is, v( ) =0 is
simply a constant. This implies that

Ruo(r) = e = (91)

R
wherea s given bg Equation 87. The Bormalization constant is derad from 01 jR10j%rdr =
1, and isc; = 2= a. Using Yoo = 1= 4 (see Table 1), the ground state of the hydrogen
atom is

1 _
100(l; 5 )= p?e e (92)

The next energy level isn = 2, which represents the rst excited state. There are, in
fact four di erent states  with this same energy: one state with = 0, in which case also
m =0; and | =1, in which casem = 1;0;+1. For | = 0, Equation 81 givesc; = y,
¢, =0, namelyv( )= ¢c(1 ). This implies

Co r r=2a:

Rzo(r): 5 1 — e

2a (93)

For | = 1, the recursion formula terminates the series after a sitgterm, v( ) is constant,
and one nds

Ros(r) = opre "2 (94)
and so on.
In fact, one can write
v() =L@ ); (95)
where 4P
Lip=( P o L) (96)
is anassociated Laguerre polynomial , and
d P
Lq(x) € ax (ex9) (97)
is known as theqgth Laguerre polynomial. | listin table 5.1 the rst few radial eigenfunc-

tions of the hydrogen.
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Rlo—a?}%e r=a

T

Ro1 = P—ﬂlaszz %}e r=2a i

Rao= b 1 35+ 3 5 ™

Ru= e 1 B5 fe
R32_ﬁp3iTh”:2 gzer:Sa i

Ro= gz 18+ 3 5 s o™
Rz = 755 %a3:2 2 Yo =

Table 2: The rst few radial wavefunctions for the hydrogenRg, (r).

According to the standard interpretation of the wavefunctio, the quantity
joam(r; s )iPdE= 20(n ) am(r s )ridrsindd (98)

represents the probability of nding the electron in the volime elementd+, when the system
is in the stationary state speci ed by the quantum numbersrg; I; m).

Since (r;; )= Rg()Ym(; ) (see Equation 62), the position probability density
i am(r;; )j?is composed of aadial part that depends only onr, and anangular part
that depends only on (recall that the dependence on disappears).

We can write the radial part as
Dei(r) = r’jRe ()% (99)

which is known as theradial distribution function. In gure 2 | plot the rst few radial
functions Rg; and the radial distribution function.

Finally, in gures 3 { 5 | give a few examples of the full probabity density of nding
the electron in (; ) for a hydrogen atom, namely

P )= am(r; D)ifde= Jn (s ) am(r; )rédrsindd (100)

for few values of the quantum numbers, |, and m. As is obvious from the discussion above,
this probability is independent on , but only onr and .

As a nal remark, | would add that in the usual spectroscopic n@tion the quantum
number | is replaced by a letter, according to the following table: Tins, the energy levels
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value of | 01 2 3 4
I
Codeletter s p d f

g

are denoted by two symbols: the rst is the principal quantummumber n, and the second is
a letter corresponding tol.

The ground state f = 1) is denoted by 1Is; The rst excited state (n = 2) contains
one X state, and three  state, corresponding tom = 1;0;+1 - so total 4 states; the
second excited state contains ones3tate, three 3 states and ve 3 states, with m =

2; 1,0;,+1;+2, so total of 9 states; etc.
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(e) Ra1 (f) Ra2

Fig. 2.| Radial functions Rg(r) (blue) and radial distribution functions D, (r) = r?R2,(r)
(green) for the hydrogen atom. The radir are normalized to the Bohr's radiusa.
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