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1. Introduction

Angular momentum plays a central role in both classical and quantum mechanics. In
classical mechanics, all isolated systems conserve angular momentum (as well as energy and
linear momentum); this fact reduces considerably the amount of work required in calculating
trajectories of planets, rotation of rigid bodies, and manymore.

Similarly, in quantum mechanics, angular momentum plays a central role in under-
standing the structure of atoms, as well as other quantum problems that involve rotational
symmetry.

Like other observable quantities, angular momentum is described in QM by an operator.
This is in fact a vector operator, similar to momentum operator. However, as we will
shortly see, contrary to the linear momentum operator, the three components of the angular
momentum operator do not commute.

In QM, there are several angular momentum operators: the total angular momentum
(usually denoted by ~J ), the orbital angular momentum (usually denoted by~L) and the
intrinsic, or spin angular momentum (denoted by~S). This last one (spin) has no classical
analogue. Confusingly, the term \angular momentum" can refer to either the total angular
momentum, or to the orbital angular momentum.

The classical de�nition of the orbital angular momentum,~L = ~r � ~p can be carried
directly to QM by reinterpreting ~r and ~p as the operators associated with the position and
the linear momentum.

The spin operator,S, represents another type of angular momentum, associated with
\intrinsic rotation" of a particle around an axis; Spin is an intrinsic property of a particle
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(nearly all elementary particles have spin), that is unrelated to its spatial motion. The
existence of spin angular momentum is inferred from experiments, such as the Stern-Gerlach
experiment, in which particles are observed to possess angular momentum that cannot be
accounted for by orbital angular momentum alone.

The total angular momentum,J, combines both the spin and orbital angular momentum
of a particle (or a system), namely~J = ~L + ~S.

2. Orbital angular momentum

Consider a particle of massm, momentum ~p and position vector~r (with respect to a
�xed origin, ~r = 0). In classical mechanics, the particle's orbital angular momentum is given
by a vector ~L, de�ned by

~L = ~r � ~p: (1)

This vector points in a direction that is perpendicular to the plane containing~r and ~p,
and has a magnitudeL = rp sin� , where � is the angle between~r and ~p. In Cartesian
coordinates, the components of~L are

L x = ypz � zpy;
L y = zpx � xpz;
L z = xpy � ypx :

(2)

The corresponding QM operators representingL x , L y and L z are obtained by replacing
x, y, z and px , py and pz with the corresponding QM operators, giving

L x = � i~
�

y @
@z� z @

@y

�
;

L y = � i~
�
z @

@x � x @
@z

�
;

L z = � i~
�

x @
@y� y @

@x

�
:

(3)

In a more compact form, this can be written as avector operator ,

~L = � i~(~r � ~r ): (4)

It is easy to verify that ~L is Hermitian.

Using the commutation relations derived for~x and ~p, the commutation relations between
the di�erent components of ~L are readily derived. For example:

[L x ; L y] = [( ypz � zpy); (zpx � xpz)] = [ ypz; zpx ] + [ zpy; xpz] � [ypz; xpz] � [zpy; zpx ] (5)
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Sincey and px commute with each other and withz and pz, the �rst term reads

[ypz; zpx ] = ypzzpx � zpxypz = ypx [pz; z] = � i~ypx (6)

Similarly, the second commutator gives

[zpy; xpz] = zpyxpz � xpzzpy = xpy[z; pz] = i~xpy (7)

The third and forth commutators vanish; we thus �nd that

[L x ; L y] = i~(xpy � ypx ) = i~L z: (8)

In a similar way, it is straightforward to show that

[L y; L z] = i~L x (9)

and
[L z; L x ] = i~L y (10)

The three equations are equivalent to the vectorial commutation relation:

~L � ~L = i~~L: (11)

Note that this can only be true for operators; since, for regular vectors, clearly~L � ~L = 0.

The fact that the operators representing the di�erent components of the angular momen-
tum do not commute, implies that it is impossible to obtain de�nite values for all component
of the angular momentum when measured simultaneously. Thismeans that if the system
is in eigenstate of one component of the angular momentum, itwill in general not be an
eigenstate of either of the other two components.

We de�ne the operator representing the square of the magnitude of the orbital angular
momentum by

~L2 = L2
x + L2

y + L2
z: (12)

It is easy to show that ~L2 does commute with each of the three components:L x , L y or L z.
For example (using [L2

x ; L x ] = 0):

[~L2; L x ] = [ L2
y + L2

z; L x ] = [ L2
y; L x ] + [ L2

z; L x ]
= L y[L y; L x ] + [ L y; L x ]L y + L z[L z; L x ] + [ L z; L x ]L z

= � i~(L yL z + L zL y) + i~(L zL y + L yL z) = 0 :
(13)

Similarly,
[~L2; L y] = [ ~L2; L z] = 0; (14)
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which can be summarized as
[~L2; ~L] = 0: (15)

Physically, this means that one can �nd simultaneous eigenfunctions of ~L2 and one of the
components of~L, implying that both the magnitude of the angular momentum and one of
its components can be precisely determined. Once these are known, they fully specify the
angular momentum.

In order to obtain the eigenvalues of~L2 and one of the components of~L (typically, L z),
it is convenient to express the angular momentum operators in spherical polar coordinates:
r; �; � , rather than the Cartesian coordinatesx, y, z. The spherical coordinates are related
to the Cartesian ones via

x = r sin� cos� ;
y = r sin� sin� ;
z = r cos�:

(16)

After some algebra, one gets:

L x = � i~
�

� sin� @
@� � cot � cos� @

@�

�

L y = � i~
�

cos� @
@� � cot � sin� @

@�

�

L z = � i~ @
@�;

~L2 = � ~2
h

1
sin �

@
@�

�
sin� @

@�

�
+ 1

sin2 �
@2

@�2

i
:

(17)

We thus �nd that the operators L x , L y, L z and ~L2 depend on� and � only, that is they
are independent on the radial coordinate~r. All these operators therefore commute with any
function of r ,

[L x ; f (r )] = [ L y; f (r )] = [ L z; f (r )] = [ L 2; f (r )] = 0 : (18)

Also, obviously, if a wavefunction dependsonly on r (but not on � , � ) it can be simultaneously
an eigenfunction ofL x , L y, L z and L 2. In all cases, the corresponding eigenvalue will be
0. (This is the only exception to the rule that that eigenvalues of one component (e.g.,L x )
cannot be simultaneously eigenfunctions of the two other components ofL).

3. Eigenvalues and eigenfunctions of L 2 and L z

Let us �nd now the common eigenfunctions toL 2 and L z, for a single particle. The
choice ofL z (rather than, e.g.,L x ) is motivated by the simpler expression (see Equation 17).
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3.1. Eigenvalues of L z

Since, in spherical coordinatesL z depends only on� , we can denote its eigenvalue by
m~ and the corresponding eigenfunctions by �m (� ). We thus have:

L z� m (� ) = m~� m (� ); (19)

namely

� i
@

@�
� m (� ) = m� m (� ): (20)

The solutions to this equation are

� m (� ) =
1

p
2�

eim� : (21)

This is satis�ed for any value ofm; however, physically we require the wave function to be
single valued(alternatively: continuous), namely � m (2� ) = � m (0), from which we �nd

ei 2�m = 1: (22)

This equation is satis�ed for m = 0; � 1; � 2; � 3; :::. The eigenvalues of the operatorL z are
thus m~, with m being integer (positive or negative) or zero. The numberm is called the
magnetic quantum number , due to the role it plays in the motion of charged particles
in magnetic �elds.

This means, that when measuring thez-component of an orbital angular momentum,
one can only obtain 0; � ~; � 2~; :::. Since the choice of thez direction was arbitrary, we see
that the component of the orbital angular momentum aboutany axis is quantized.

The wavefunctions � m (� ) are orthonormal, namely

Z 2�

0
� ?

n (� )� m (� )d� = � nm : (23)

Furthermore, they form a complete set, namely every function f (� ) can be written as

f (� ) =
+ 1X

m= �1

am � m (� ); (24)

where the coe�cients am are C-numbers.
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3.2. Simultaneous eigenvalues of L 2 and L z

Let us denote simultaneous eigenfunctions of the operatorL 2 and L z as Ylm (�; � ). We
will write the eigenvalues ofL 2 as l(l + 1) ~2 (from reason which will become clear shortly).
We then have:

L 2Ylm (�; � ) = l(l + 1) ~2Ylm (�; � ) (25)

and
L zYlm (�; � ) = m~Ylm (�; � ) (26)

Comparing equation 26 and equation 19, we see that we can separate Ylm (�; � ),

Ylm (�; � ) = � lm (� )� m (� ) (27)

where the functions �m (� ) are given by Equation 21, �m (� ) = 1p
2�

eim� .

Using the expression forL 2 in spherical coordinates (Equation 17), we write Equation
25 as �

1
sin�

@
@�

�
1

sin�
@
@�

�
+

1
sin2 �

@2

@�2

�
Ylm (�; � ) = � l(l + 1) Ylm (�; � ): (28)

Using the variable separation, as well as equation 21 for �m (� ), Equation 28 becomes
�

1
sin�

@
@�

�
1

sin�
@
@�

�
+

�
l(l + 1) �

m2

sin2 �

��
� lm (� ) = 0 (29)

This equation is not easy to solve. In order to proceed, we change variable, writing
w = cos� and Flm (w) = � lm (� ). Equation 29 becomes

�
�
1 � w2

� d2

dw2
� 2w

d
dw

+ l(l + 1) �
m2

1 � w2

�
Flm (w) = 0 (30)

This equation is known in mathematics as theLegendre's associated di�erential equa-
tion (the m = 0 case is simply calledLegendre's di�erential equation ), honoring the
French mathematicianAdrien-Marie Legendre.

The solutions to this equation are given by theassociated Legendre's functions ,
Pm

l j(w), which are de�ned by

Pm
l (w) = (1 � w2) jmj=2

�
d

dw

� jmj

Pl (w); (31)

wherePl (w) is known as thelth Legendre polynomial , which is de�ned by theRodrigues
formula ,

Pl (w) =
1

2l l !

�
d

dw

� l

(w2 � 1)l (32)
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(Note that for m = 0, P0
l (w) = Pl (w)).

In order for Rodrigues formula to make sense,l must be non-negative integer.
Moreover, if jmj > l , then Equation 31 impliesPm

l = 0. Thus, the physically accepted
values ofl and m are

l = 0; 1; 2; :::
m = � l; � l + 1; :::; � 2; � 1; 0; 1; 2; :::; l � 1; l:

(33)

This result can be understood physically as follows: SinceL 2 = L2
x + L2

y + L2
z, the expectation

value ofL 2 in a given state 	 is hL 2i = hL2
x i + hL2

y i + hL2
zi . SinceL x and L y are Hermitian,

hL2
x i � 0 and hL2

y i � 0, and therefore

hL 2i � h L2
zi (34)

For a state 	 such that its angular part is an eigenfunction ofboth L 2 and L z, we thus have
from Equations 25, 26 and 34

l(l + 1) � m2; (35)

from which the result in Equation 33, namely thatm is restricted to jmj � l follows. The
quantum number l, whose allowed values are given in Equation 33, is called theorbital
angular momentum quantum number .

By using Rodrigues formula (Equation 32), one can immediately �nd the �rst few Leg-
endre Polynomials:

P0(w) = 1;
P1(w) = 1

2
d

dw (w2 � 1) = w;
P2(w) = 1

2 (3w2 � 1) ;
P3(w) = 1

2 (5w3 � 3w) ;
P4(w) = 1

8 (35w4 � 30w2 + 3) ;
P5(w) = 1

8 (63w5 � 70w3 + 15w) ;

(36)

and so on.

Using Equation 31, one can determine the associated Legendre's functions, Pm
l . The

�rst few are (inserting again w = cos� ):

P0
0 = 1;

P0
1 = cos� ; P1

1 = sin( � );
P0

2 = 1
2 (3 cos2 � � 1) ; P1

2 = 3 sin � cos� ; P2
2 = 3 sin2 � ;

P0
3 = 1

2 (5 cos3 � � 3 cos� ) ; P1
3 = 3

2 sin� (5 cos2 � � 1) ; P2
3 = 15 sin2 � cos� ; P3

3 = 15 sin3 � ;
(37)

etc.
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Fig. 1.| Polar plots of r = abs[Pm
l (� )] as a function of� .
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Plots of the �rst few associated Legendre functions,Pm
l (� ) are shown in Figure 1.

Using Rodrigues formula and integrating by parts, one can show that the associated
Legendre's functions,Pm

l are orthogonal to each other, but are not normalized to unity,
namely: Z +1

� 1
dwPjmj

l (w)P jmj
l0 (w) =

2
2l + 1

(l + jmj)!
(l � j mj)!

� ll 0 (38)

However, with the use of Equation 38, one can multiplyPm
l (w) with the appropriate normal-

ization factor, and obtain a normalized solutionFlm (w) to Equation 30 - up to an uncertain
phase factor of modulus 1.

The corresponding physical solutions to equation 29 �lm (� ) are given by

� lm (� ) =

8
<

:
(� 1)m

h
(2l+1)

2
(l � m)!
(l+ m)!

i 1=2
Pm

l (cos� ); m � 0

(� 1)m � l jmj(� ) m < 0:
(39)

These functions are normalized, namely
Z �

0
� ?

l0m (� )� lm (� ) sin(� )d� = � ll 0: (40)

We can now (�nally) write the simultaneous eigenfunctionsYlm (�; � ) common to the
operatorsL 2 and L z (see equations 25 and 26) as

Ylm (�; � ) =

8
<

:
(� 1)m

h
(2l+1)

4�
(l � m)!
(l+ m)!

i 1=2
Pm

l (cos� )eim� ; m � 0

(� 1)mY ?
l; � m (�; � ) m < 0:

(41)

(where we have adopted the commonly use convention for the phase). These functions are
known asspherical harmonics .

The spherical harmonics are normalized to unity on a unit sphere, and are orthogonal:
Z

Y ?
l0m0(�; � )Ylm (�; � )d
 �

Z 2�

0
d�

Z �

0
d� sin(� )Y ?

l0m0(�; � )Ylm (�; � ) = � ll 0� mm 0 (42)

They further form a complete set , namely, every (arbitrary) function f = f (�; � ) can be
expanded as

f (�; � ) =
1X

l=0

+ lX

m= � l

alm Ylm (�; � ) (43)

The lowest order spherical harmonics are summarized in table 1.
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l m Ylm (�; � )

0 0 Y0;0 = 1p
4�

1 0 Y1;0 =
�

3
8�

� 1=2
cos�

� 1 Y1;1 = �
�

3
8�

� 1=2
sin�e � i�

2 0 Y2;0 =
�

5
16�

� 1=2
(3 cos2 � � 1)

� 1 Y2;� 1 = �
�

15
8�

� 1=2
sin� cos�e � i�

� 2 Y2;� 2 = �
�

15
32�

� 1=2
sin2 �e � 2i�

3 0 Y3;0 =
�

7
16�

� 1=2
(5 cos3 � � 3 cos� )

� 1 Y3;� 1 = �
�

21
64�

� 1=2
sin� (5 cos2 � � 1) e� i�

� 2 Y3;� 2 =
�

105
32�

� 1=2
sin2 � cos�e � 2i�

� 3 Y3;� 3 = �
�

35
64�

� 1=2
sin3 �e � 3i�

Table 1: The �rst few spherical harmonics,Ylm .

3.3. The angular momentum ladder operators

Let us study the e�ect of the operatorsL x and L y on the eigenfunctionsYlm . For this
purpose, it is convenient to introduce the two operators:

L � = L x � iL y: (44)

These operators arenot Hermitian, but are mutually adjoint, since L y
+ = L x � iL y = L �

and L y
� = L x + iL y = L+ (and we used the fact thatL x and L y are Hermitian).

Since bothL x and L y commute with L 2, so doL � ,

[L 2; L � ] = 0: (45)

Using the commutation relations between the components of the angular momentum
(Equations 8 - 10), it is straightforward to show that the ladder operatorsL+ and L � satisfy:

L � L � = L 2 � L2
z � ~L z; (46)

[L+ ; L � ] = 2~L z; (47)

[L z; L � ] = � ~L � : (48)

Equation 48 can be used with the eigenvalue Equation 26 to obtain

L z(L � Ylm ) = ( m � 1)~(L � Ylm ) (49)
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Similarly, using the fact that L � commute with L 2, from Equation 25 we have

L 2(L � Ylm ) = l(l + 1) ~2(L � Ylm ) (50)

This implies that when acting on the common eigenfunctionYlm of L 2 and L z, the
operator L+ produces a new common eigenfunction, for which the eigenvalue ofL 2 does not
change, (remainsl(l + 1) ~2), but the eigenvalue ofL z increases by~, to become (m + 1) ~.
Similarly, L � Ylm is a simultaneous eigenfunction ofL 2 and L z with eigenvaluesl(l + 1) ~2

and (m � 1)~. This explains their names -raising and lowering operators.

We therefore �nd that
L � Ylm = C �

lm Yl;m � 1; (51)

where C �
lm are constants, whose value we want to �nd. To determine the value of these

constants, we return to Equation 17, and writeL � in spherical polar coordinates,

L � = ~e� i�

�
�

@
@�

+ i
cos�
sin�

@
@�

�
(52)

This can be applied to the functionsYlm derived above. The result is

L � Ylm (�; � ) = ~[l(l + 1) � m(m � 1)]1=2Yl;m � 1(�; � ) (53)

Let us switch now to Dirac's notation. In this notation, the state described by the
spherical harmonicYlm (�; � ) is denoted by the ketjl; mi .

The expectation values ofL � are zero: this follows from the orthonormality of the
spherical harmonics, which can be written ashl; mjl0; m0i = � ll 0� mm 0:

hl; mjL � jl; mi = ~[l(l + 1) � m(m � 1)]1=2hl; mjl; m � 1i = 0: (54)

Using L x = 1
2(L+ + L � ) and L y = 1

2i (L+ � L � ), this result implies that the expectation
valueshL x i = hL y i = 0. On the other hand,

hL2
x i = hL2

y i = hL 2 � L2
zi =

1
2

[l(l + 1) � m2]~2: (55)

Interestingly, even whenm = � l - the orbital angular momentum is \parallel" or \anti-
parallel" to the z-axis, its x- and y- components are still not zero, although the average
values ofL x and L y vanish.
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4. Schr•odinger equation in three dimensions, central pote ntial

The knowledge we gained on angular momentum is particularlyuseful when treating
real life problems. As our world is three dimensional, we needto generalize the treatment of
Schr•odinger equation to 3-d.

The time-independent Schr•odinger equation becomes
�
�

~2

2m
r 2 + V

�
 = E (56)

where, in 3-d,

r 2 =
@2

@x2
+

@2

@y2
+

@2

@z2
: (57)

In many problems in physics, the potential iscentral , namely, V = V(r ); this means
that the potential is spherically symmetric , and is not a function of� or � . In this type
of systems - the best representative may be the hydrogen atomto be discussed shortly, it is
best to work in spherical coordinates,r; �; � .

In spherical coordinates, the laplacian becomes

r 2 =
1
r 2

@
@r

�
r 2 @

@r

�
+

1
r 2 sin�

@
@�

�
sin�

@
@�

�
+

1
r 2 sin2 �

�
@2

@�2

�
: (58)

Comparing to Equation 17, we see that the last two terms of thelaplacian are equal to
� L 2=~2r 2. Thus, we can write the Hamiltonian as

Ĥ = �
~2

2m
r 2 + V(r ) = �

~2

2m

�
1
r 2

@
@r

�
r 2 @

@r

�
�

L 2

~2r 2

�
+ V(r ) (59)

and the time-independent Schr•odinger equation is
�

�
~2

2m

�
1
r 2

@
@r

�
r 2 @

@r

�
�

L 2

~2r 2

�
+ V(r )

�
 (r; �; � ) = E (r; �; � ) (60)

In order to proceed, we note that all of the angular momentum operators: L x , L y, L z and
L 2 do not operate on the radial variable,r ; this can be seen directly by their description in
spherical coordinates, equation 17. This means that all these operators commute withV(r ):
[L z; V(r )] = 0, etc. Furthermore, sinceL x , L y and L z commute with L 2, we conclude that
all of the angular momentum operators commute with the Hamiltonian,

[Ĥ; L x ] = [ Ĥ; L y] = [ Ĥ; L z] = [ Ĥ; L 2] = 0 (61)
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This means that it is possible to obtain solutions to Schr•odinger equation (Equation 60)
which are common eigenfunctions of̂H , L 2 and L z.

We already know simultaneous eigenfunctions ofL 2 and L z: these are of course the
spherical harmonics,Ylm (�; � ). Thus, a full solution to Schr•odinger equation can be written
as

 (r; �; � ) = REl (r )Ylm (�; � ): (62)

REl (r ) is a radial function of r , which we need to �nd. The subscriptsE and l mark the fact
that in general, we obtain di�erent functions for di�erent values of the energy(E) and the
orbital angular momentum quantum numberl. It is independent, though, on the magnetic
quantum numberm, as can be seen by inserting this solution into Schr•odingerequation (in
which the operatorL 2 appears explicitly, but not L z).

We may put the solution in Equation (62) in Schr•odinger equation (60), and use the
fact that L 2Ylm (�; � ) = l(l + 1) ~2Ylm (�; � ) (Equation 25), to obtain an equation forREl (r ),

�
�

~2

2m

�
@2

@r2
+

2
r

@
@r

�
+

l(l + 1) ~2

2mr 2
+ V(r )

�
REl (r ) = EREl (r ) (63)

To be physically acceptable, the wave functions must be square integrable, and normal-
ized to 1: Z 1

0
drr 2

Z �

0
d� sin�

Z 2�

0
d� j Elm (r; �; � )j2 = 1: (64)

We already know that the spherical part,Ylm (�; � ) is normalized; see Equation 42. Thus,
the radial part of the eigenfunctions must satisfy the normalization condition

Z 1

0
drr 2jREl (r )j2 = 1: (65)

We may further simplify Equation 63 by changing a variable,

uEl (r ) = rR El (r ) (66)

Thus, R = u=r, dR=dr = [ r (du=dr) � u]=r2, and 1
r 2

@
@r

�
r 2 @

@r

�
u
r = 1

r
@2u
@r2 . Overall, Equation 63

becomes

�
~2

2m
d2uEl

dr2
+ Vef f (r )uEl (r ) = EuEl (r ) (67)

where

Vef f (r ) = V(r ) +
l(l + 1) ~2

2mr 2
(68)

is an e�ective potential ; in addition to the interaction potential, V(r ) it contains a re-
pulsive centrifugal barrier , (~2=2m)[(l(l + 1) =r2].
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With the inclusion of this potential, Equation 67 has an identical form to the 1-d (time-
independent) Schr•odinger equation. The only di�erence isthat it is physically meaningful
only for r > 0, and we must provide the boundary condition atr = 0. The boundary
conditions are provided by the physical requirement that the function REl (r ) remains �nite
at the origin, r = 0. Since REl (r ) = uEl (r )=r, this implies

uEl (0) = 0 : (69)

5. The hydrogen atom

Perhaps the most important demonstration of the above analysis (and of quantum
mechanics in general) is the ability to predict the energy levels and wave functions of the
hydrogen atom. This is the simplest atom, that contains one proton and one electron. The
proton is heavy (mp=me = 1836) and is essentially motionless - we can assume it beingat
the origin, r = 0). The proton has a positive charge +q, and the electron a negative charge,
� q. We can therefore use Coulumb's law to calculate the potential energy:

V(r ) = �
q2

4�� 0

1
r

(70)

(in SI units).

The radial equation (67) becomes:

�
~2

2m
d2uEl

dr2
+

�
�

q2

4�� 0

1
r

+
l(l + 1) ~2

2mr 2

�
uEl (r ) = EuEl (r ) (71)

Before proceeding to solve this equation, we note the following. At r ! 1 , Vef f (r ) ! 0.
This means that for any value of positive energy (E > 0), one could �nd an acceptable eigen-
function uEl (r ). Therefore, there is acontinuous spectrumfor E > 0, describing scattering
between electron and proton (this will be dealt with in next year's QM...). We focus here
on solutions for whichE < 0. These are calledbound states .

We proceed by some change of variables: We write

� �

p
� 2mE

~
(72)

(note that E < 0, and so� is real). Equation 71 becomes

1
� 2

d2uEl

dr2
=

�
1 �

mq2

2�� 0~2� 2r
+

l(l + 1)
� 2r 2

�
uEl (73)
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We next introduce

� = �r ; � 0 =
mq2

2�� 0~2�
(74)

and write Equation 73 as

d2uEl

d� 2
=

�
1 �

� 0

�
+

l(l + 1)
� 2

�
uEl (75)

We proceed along lines which are somewhat similar to those taken in deriving the SHO.
We begin by examining the asymptotic behavior. We note that when � ! 1 , Equation 75
is approximately d2uEl =d� 2 � uEl , which admits the general solution

u(� ) = Ae� � + Be� :

However, in order foruEl to remain �nite as � ! 1 , we must demandB = 0, implying
uEl (� ) � Ae� � .

On the other hand, as� ! 0, the centrifugal term dominates (apart whenl = 0, but,
as will be seen, the result is valid there too), and one can write

d2uEl

d� 2
�

l (l + 1)
� 2

uEl

with the general solution
u(� ) = C� l+1 + D� � l :

Again, the second term,� � l diverges as� ! 0, implying that we must demandD = 0. Thus,

uEl (� ) � C� l+1

for small � .

This discussion motivates another change of variables, writing

uEl (� ) = � l+1 e� � v(� ) (76)

wherev(� ) � vEl (� ), and the subscriptsEl are omitted for clarity.

With this change of variables, we have

du
d�

= � le� �

�
(l + 1 � � )v + �

dv
d�

�

and
d2u
d� 2

= � le� �

��
� 2l � 2 + � +

l(l + 1)
�

�
v + 2( l + 1 � � )

dv
d�

+ �
d2v
d� 2

�
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and Equation 75 becomes

�
d2v
d� 2

+ 2( l + 1 � � )
dv
d�

+ [ � 0 � 2(l + 1)] v = 0: (77)

We search for solutionv(� ) is terms of power series:

v(� ) =
1X

j =0

cj � j : (78)

We can thus write:
dv
d�

=
1X

j =0

jc j � j � 1 =
1X

j =0

(j + 1) cj +1 � j ; (79)

and
d2v
d� 2

=
1X

j =0

j (j + 1) cj +1 � j � 1 (80)

similar to the analysis of the SHO, we insert these results into Equation 77, and equate the
coe�cients of each individual power law of� to write:

j (j + 1) cj +1 + 2( l + 1)( j + 1) cj +1 � 2jc j + [ � 0 � 2(l + 1)] cj = 0;

or

cj +1 =
�

2(j + l + 1) � � 0

(j + 1)( j + 2 l + 2)

�
cj (81)

Similar to the SHO case, we note that forj � f l; � 0g we have

cj +1 �
2
j

cj

which givescj = (2 j =j !)c0, and v(� ) = c0
P

j
2j

j ! �
j = c0e2� , from which u(� ) = c0� l+1 e� ; this

of course is unacceptable, as it diverges at large� .

This means that the seriesmust terminate , namely there is a maximum integer,j max

for which c(j max +1) = 0. From Equation 81 this gives

2(j max + l + 1) � � 0 = 0: (82)

We can now de�ne theprinciple quantum number, n via

n � j max + l + 1: (83)

Thus, � 0 = 2n. But � 0 determines the energy via equations 72 and 74:

E = �
~2� 2

2m
= �

mq4

8� 2� 2
0~2� 2

0
: (84)



{ 17 {

We therefore conclude that the allowed energies are

En = �

"
m

2~2

�
q2

4�� 0

� 2
#

1
n2

; n = 1; 2; 3; ::: (85)

This is the well-knownBohr's formula .

Using again equation 74, one �nds

� =
�

mq2

4�� 0~2

�
1
n

=
1

an
; (86)

where

a �
4�� 0~2

mq2
= 5:29� 10� 11 m (87)

is known as theBohr's radius .

The ground state (namely, the state of lowest energy) is obtained by puttingn = 1 in
Equation 85. Putting the values of the physical constants, one �nds that

E1 = �

"
m

2~2

�
q2

4�� 0

� 2
#

= � 13:6 eV (88)

This is the binding energy of the hydrogen atom - the amount of energy one needs to give
to the electron in the hydrogen atom that is in its ground state to ionize the atom (=release
the electron).

Furthermore, E2 = E1=22 = E1=4 = � 3:4 eV, etc.

5.1. The wavefunctions

Returning to Equation 62, the wavefunctions are given by

 (r; �; � ) = REl (r )Ylm (�; � ):

where (using Equations 66 and 76)

REl (r ) =
1
r

� l+1 e� � v(� ): (89)

Here, v(� ) is given by the polynomial of degreej max = n � l � 1 (see Equation 83).
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In the ground state , n = 1; Equation 83 forcesl = 0 and j max = 0. Since l = 0, we
known that m = 0 as well (see Equation 35). This means that the wave function is given by

	 100 = R10(r )Y00(�; � ) (90)

Using the recursion formula (Equation 81), withj = 0, leads to c1 = 0; that is, v(� ) = 0 is
simply a constant. This implies that

R10(r ) =
c0

a
e� r=a (91)

wherea is given by Equation 87. The normalization constant is derived from
R1

0 jR10j2r 2dr =
1, and is c0 = 2=

p
a. Using Y00 = 1=

p
4� (see Table 1), the ground state of the hydrogen

atom is
 100(r; �; � ) =

1
p

�a 3
e� r=a (92)

The next energy level isn = 2, which represents the �rst excited state. There are, in
fact four di�erent states with this same energy: one state withl = 0, in which case also
m = 0; and l = 1, in which casem = � 1; 0; +1. For l = 0, Equation 81 givesc1 = � c0,
c2 = 0, namely v(� ) = c0(1 � � ). This implies

R20(r ) =
c0

2a

�
1 �

r
2a

�
e� r=2a: (93)

For l = 1, the recursion formula terminates the series after a single term, v(� ) is constant,
and one �nds

R21(r ) =
c0

4a2
re� r=2a (94)

and so on.

In fact, one can write
v(� ) = L2l+1

n� l � 1(2� ); (95)

where

Lp
q� p = ( � 1)p

�
d

dx

� p

Lq(x) (96)

is an associated Laguerre polynomial , and

Lq(x) � ex

�
d

dx

� p

(exxq) (97)

is known as theqth Laguerre polynomial. I list in table 5.1 the �rst few radial eigenfunc-
tions of the hydrogen.
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R10 = 2
a3=2 e� r=a

R20 = 1p
2a3=2

�
1 � 1

2
r
a

�
e� r=2a

R21 = 1p
24a3=2

r
ae� r=2a

R30 = 2p
27a3=2

h
1 � 2

3
r
a + 2

27

�
r
a

� 2
i

e� r=3a

R31 = 8
27

p
6a3=2

�
1 � 1

6
r
a

� �
r
a

�
e� r=3a

R32 = 4
81

p
30a3=2

�
r
a

� 2
e� r=3a

R40 = 1
4a3=2

h
1 � 3

4
r
a + 1

8

�
r
a

� 2
� 1

192

�
r
a

� 3
i

e� r=4a

R41 =
p

5
16

p
3a3=2

h
1 � 1

4
r
a + 1

80

�
r
a

� 2
i �

r
a

�
e� r=4a

R42 = 1
64

p
5a3=2

�
1 � 1

12
r
a

� �
r
a

� 2
e� r=4a

R43 = 1
768

p
35a3=2

�
r
a

� 3
e� r=4a

Table 2: The �rst few radial wavefunctions for the hydrogen,REl (r ).

According to the standard interpretation of the wavefunction, the quantity

j nlm (r; �; � )j2d~r =  ?
nlm (r; �; � ) nlm (r; �; � )r 2dr sin�d�d� (98)

represents the probability of �nding the electron in the volume elementd~r, when the system
is in the stationary state speci�ed by the quantum numbers (n; l; m).

Since  (r; �; � ) = REl (r )Ylm (�; � ) (see Equation 62), the position probability density
j nlm (r; �; � )j2 is composed of aradial part that depends only onr , and an angular part
that depends only on� (recall that the dependence on� disappears).

We can write the radial part as

DEl (r ) = r 2jREl (r )j2; (99)

which is known as theradial distribution function. In �gure 2 I plot the �rst few radial
functions REl and the radial distribution function.

Finally, in �gures 3 { 5 I give a few examples of the full probability density of �nding
the electron in (r; � ) for a hydrogen atom, namely

P(r; �; � ) = j nlm (r; �; � )j2d~r =  ?
nlm (r; �; � ) nlm (r; �; � )r 2dr sin�d�d� (100)

for few values of the quantum numbersn, l , and m. As is obvious from the discussion above,
this probability is independent on� , but only on r and � .

As a �nal remark, I would add that in the usual spectroscopic notation the quantum
number l is replaced by a letter, according to the following table: Thus, the energy levels
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value of l 0 1 2 3 4
l l l l l

Code letter s p d f g

are denoted by two symbols: the �rst is the principal quantumnumber n, and the second is
a letter corresponding tol.

The ground state (n = 1) is denoted by 1s; The �rst excited state (n = 2) contains
one 2s state, and three 2p state, corresponding tom = � 1; 0; +1 - so total 4 states; the
second excited state contains one 3s state, three 3p states and �ve 3d states, with m =
� 2; � 1; 0; +1; +2, so total of 9 states; etc.
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Fig. 2.| Radial functions REl (r ) (blue) and radial distribution functions DEl (r ) = r 2R2
El (r )

(green) for the hydrogen atom. The radiir are normalized to the Bohr's radiusa.
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(a) j	 100 j2d~r (b) j	 100 j2d~r

(c) j	 200 j2d~r (d) j	 200 j2d~r

(e) j	 210 j2d~r (f) j	 210 j2d~r

Fig. 3.| Probability density P(r; �; � ) of �nding the electron in the Hydrogen atom at r; � .
The radius r is normalized to Bohr's radiusa. Left are 3-d plots; right: same plots in 2d.
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(a) j	 211 j2d~r (b) j	 211 j2d~r

(c) j	 300 j2d~r (d) j	 300 j2d~r

(e) j	 310 j2d~r (f) j	 310 j2d~r

Fig. 4.| Same as in Figure 3.
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(a) j	 320 j2d~r (b) j	 320 j2d~r

(c) j	 321 j2d~r (d) j	 321 j2d~r

(e) j	 322 j2d~r (f) j	 322 j2d~r

Fig. 5.| Same as in Figure 3.


