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1. Introduction: the cosmological principle

We are now going to apply Einstein’s equation to study the metric of the entire universe.

The ability to study global properties such as the structure and temporal evolution of the

universe on the largest scale opened a new branch of science, known as cosmology.

Modern day cosmology is based on the hypothesis that on a large enough scale the

universe is spatially homogeneous and isotropic. Together, these two assumptions are

known as the cosmological principle. By homogeneity we mean that the properties of

the universe are the same at every point in space; the universe is invariant under translations.

By isotropy we mean that being in a given point, in every direction we look at, the properties

of the universe look the same; the universe is invariant under rotations.

The roots of this idea lie in the Copernican principle, which states that the earth is

not in a central, specially favored position.

Clearly, the idea that the universe is homogeneous and isotropic seem to be incorrect:

when looking to the right and to the left (or here and at the center of the sun), the conditions

are obviously not similar, and the universe is thus not homogeneous and isotropic; however,

we believe it is so on the very largest scale.

The validity of the cosmological principle on the largest scales is manifested in a number

of different observations, such as (i) number counts of galaxies and (ii) observations of diffuse

X-ray and γ-ray backgrounds. It is most clear in the (iii) 2.7◦K microwave background

radiation. Although we now know that the microwave background is not perfectly smooth

(and nobody ever expected that it was), the deviations from regularity are on the order of

10−5 or less, certainly an adequate basis for an approximate description of spacetime on large

scales.

From a formal mathematical definition, by homogeneity we mean that given any two

points p and q in a manifoldM , there is an isometry which takes p into q. Note that a metric
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can be isotropic but not homogeneous (such as a cone, which is isotropic around its vertex

but certainly not homogeneous), or homogeneous but nowhere isotropic (such as R× S2 in

the usual metric).

On the other hand, if a space is isotropic everywhere then it is homogeneous. Likewise,

if it is isotropic around one point and also homogeneous, it will be isotropic around every

point. Since there is ample observational evidence for isotropy, and the Copernican principle

would have us believe that we are not the center of the universe and therefore observers

elsewhere should also observe isotropy, we will henceforth assume both homogeneity and

isotropy. A space that is both homogeneous and isotropic is a maximally symmetric space.

There is one catch. When we look at distant galaxies, they appear to be receding from

us; the universe is apparently not static, but changing with time. Therefore the idea that the

universe is homogeneous and isotropic, apply only to the spatial part of space-time, which

is a sub-space of the 4-dimensional space-time.

Thus, while I could introduce directly the corresponding metric (which is known as

the Robertson-Walker metric), for mathematical completeness let us discuss first some

mathematical properties of maximally symmetric spaces, and then apply them to introduce

the metric.

2. Maximally symmetric spaces

Formally, a maximally symmetric space is a space which possesses the largest pos-

sible number of Killing vectors. On an n-dimensional manifold this number is n(n + 1)/2.

While I will not prove this statement below, it is easy to understand at an informal level.

Consider the Euclidean space Rn, where the isometries are well known to us: translations

and rotations. In general there will be n translations, one for each direction we can move.

There will also be n(n− 1)/2 rotations; for each of n dimensions there are n− 1 directions

in which we can rotate it, but we must divide by two to prevent overcounting (rotating x

into y and rotating y into x are two versions of the same thing). We therefore have

n+
n(n− 1)

2
=
n(n+ 1)

2
(1)

independent Killing vectors. The same kind of counting argument applies to maximally

symmetric spaces with curvature (such as spheres) or a non-Euclidean signature (such as

Minkowski space), although the details are marginally different.

Note that in n ≥ 2 dimensions, there can be more Killing vectors than dimensions. This

is because a set of Killing vector fields can be linearly independent, even though at any one
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point on the manifold the vectors at that point are linearly dependent. It is trivial to show

(so you should do it yourself) that a linear combination of Killing vectors with constant

coefficients is still a Killing vector (in which case the linear combination does not count as

an independent Killing vector), but this is not necessarily true with coefficients which vary

over the manifold.

2.1. A few more algebraic properties of Killing vectors

Let us return in this sub-section to discuss general properties of Killing vectors, to be

used later in the study of maximally symmetric spaces.

Recall that Killing vectors satisfy Killing conditions,

Kσ;ρ +Kρ;σ = 0. (2)

From the definition of the curvature tensor, we have

Kσ;ρ;µ −Kσ;µ;ρ = −Rλ
σρµKλ. (3)

(Recall that Equation 3 is true by the definition / construction of the curvature tensor for

any general vector Vσ, and thus it is clearly true for Vσ = Kσ; see the chapter on “curvature”,

Equation 12). Using the cyclic sum rule of the curvature tensor,

Rλ
σρµ +Rλ

µσρ +Rλ
ρµσ = 0, (4)

in Equation 3, we find that any vector (not necessarily a Killing vector !) Kµ satisfies

Kσ;ρ;µ −Kσ;µ;ρ +Kµ;σ;ρ −Kµ;ρ;σ +Kρ;µ;σ −Kρ;σ;µ = 0. (5)

Using now the Killing condition (Equation 2) in Equation 5, we get

Kσ;ρ;µ −Kσ;µ;ρ −Kµ;ρ;σ = 0, (6)

from which the commutator of the two covariant derivatives in Equation 3 becomes

Kµ;ρ;σ = −Rλ
σρµKλ. (7)

Using again the definition of the curvature tensor, we can write the commutator of the two

covariant derivatives (again, from the definition of the curvature tensor, Equation 11 there):

Kρ;µ;σ;ν −Kρ;µ;ν;σ = −Rλ
ρσνKλ;µ −Rλ

µσνKρ;λ. (8)
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In order for Equation 7 to fulfill the condition set in Equation 8, it is required that

Rλ
σρµKλ;ν −Rλ

νρµKλ;σ +
(

Rλ
σρµ;ν −Rλ

νρµ;σ

)

Kλ = −Rλ
ρσνKλ;µ −Rλ

µσνKρ;λ (9)

(we basically took the derivative of Equation 7 and plugged it in, while replacing µ↔ ρ and

σ ↔ ν). When using again the Killing condition (Equation 2, Kσ;ρ +Kρ;σ) we find that
(

−Rλ
ρσνδ

κ
µ +Rλ

µσνδ
κ
ρ −Rλ

σρµδ
κ
ν +Rλ

νρµδ
κ
σ

)

Kλ;κ =
(

Rλ
σρµ;ν −Rλ

νρµ;σ

)

Kλ (10)

Armed with this, let us look at maximally symmetric spaces.

2.2. Killing vectors in maximally symmetric spaces

A maximally symmetric space is both homogeneous and isotropic.

Consider a point X in a homogeneous space. The homogeneity of space implies that

the metric must admit Killing vectors that take all possible values of X, namely at a given

point in space there is a Killing vector in the direction of any other point. In n-dimensional

space, there are thus n such independent Killing vectors.

The space is also isotropic at X; Thus, the infinitesimal isometries (coordinate change

xµ
′

= xµ + ǫKµ) leave the point X fixed, namely Kλ(X) = 0, and at the same time the first

derivative Kλ;ν(X) takes any value - subject only to the antisymmetry condition set by the

Killing equation (equation 2) [Think of rotation around a given point. The Killing vector

associated with it will be zero at the origin]. Combined with the homogeneity condition,

this implies that Kλ;ν = Kλ;ν(X) is an arbitrary antisymmetric matrix, and therefore in n

dimensions there are n(n− 1)/2 independent such Killing vectors.

We can now use the conditions that in a maximally symmetric space Kλ = 0 and

Kλ;ν = −Kν;λ in Equation 10, to find that the coefficient of Kλ;κ must have a vanishing

antisymmetric part, namely

(−Rλ
ρσνδ

κ
µ+R

λ
µσνδ

κ
ρ−Rλ

σρµδ
κ
ν+R

λ
νρµδ

κ
σ) = (−Rκ

ρσνδ
λ
µ+R

κ
µσνδ

λ
ρ−Rκ

σρµδ
λ
ν+R

κ
νρµδ

λ
σ) (11)

We next contract κ and µ to get

−nRλ
ρσν +Rλ

ρσν −Rλ
σρν +Rλ

νρσ = −Rλ
ρσν +Rσρδ

λ
ν −Rνρδ

λ
σ (12)

where we have used the facts that Rµ
µσν = 0, −Rκ

σρκ = Rσρ, and in n dimensions δκκ = n.

We use now the cyclic sum rule (Equation 4) so that the last 3 terms in the left hand

side are equal to 0. Further multiply by gλα, Equation 12 becomes

(n− 1)Rαρσν = Rνρgασ −Rσρgαν (13)
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(I switched the order of the last two terms in Equation 12 - the last term on the right hand

side pf Equation 12 becomes the first term on the right hand side of Equation 13, and the

one before last became the last).

Due to the symmetry properties of the metric tensor, this must be symmetric with

respect to exchange of α and ρ, and so

Rνρgασ −Rσρgαν = Rναgρσ +Rσαgρν . (14)

Multiplying by gαλ and contracting λ with ν, we find

Rσρ − nRσρ = −Rλ
λgσρ +Rρσ. (15)

The Ricci tensor thus takes the form

Rσρ =
1

n
gσρR

λ
λ (16)

and using Equation 13 we can write the Riemann tensor as

Rλρσν =
Rα

α

n(n− 1)
(gνρgλσ − gσρgλν) . (17)

As a final step, we note that in a space that is isotropic everywhere, Equation 16 holds

at every point. In this case, we can use the Bianchi identity (Equation 36 in “curvature”,

∇µGµν = ∇µ(Rµν − 1
2
Rgµν) = 0) with Equation 16 to write

0 = [Rσ
ρ −

1

2
δσρR

λ
λ];σ =

(

1

n
− 1

2

)

(Rλ
λ);σ (18)

This result implies that if n > 2 (namely, in 3 or more dimensions) that Rλ
λ is constant in

space. It is thus convenient to introduce the curvature constant k by Rλ
λ ≡ n(n− 1)k, and

write equation 17 as

Rλρσν = k (gνρgλσ − gσρgλν) (19)

3. The Robertson-Walker metric

Armed with Equation 19, we can return now to the construction of a cosmological model.

Our model will consider the idea that the universe is homogeneous and isotropic in space,

but not in time.

We therefore consider our spacetime to be R×Σ, where R represents the time direction

and Σ is a homogeneous and isotropic three-manifold. The usefulness of homogeneity and
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isotropy is that they imply that Σ must be a maximally symmetric space. This is a direct

consequence of the homogeneity and isotropy assumption. The metric thus takes the form

ds2 = −dt2 + a2(t)gij(x)dx
idxj . (20)

Here t is the timelike coordinate, and (x1, x2, x3) are the coordinates on Σ; gij is the maxi-

mally symmetric metric on Σ.

The function a(t) is known as the scale factor, and it tells us “how big” the spacelike

slice Σ is at the moment t. The coordinates used here, in which the metric is free of cross

terms dt dxi and the spacelike components are proportional to a single function of t, are

known as comoving coordinates, and an observer who stays at constant xi is also called

“comoving”. Only a comoving observer will think that the universe looks isotropic; in fact

on Earth we are not quite comoving, and as a result we see a dipole anisotropy in the cosmic

microwave background as a result of the conventional Doppler effect.

We can now write Equation 19 as

(3)Rijkl = k(gikgjl − gilgjk) , (21)

where we put a superscript (3) on the Riemann tensor to remind us that it is associated with

the three-metric gij , not the metric of the entire spacetime. The Ricci tensor is then

(3)Rjl = (n− 1)kgjl = 2kgjl . (22)

(where n = 3 dimensions).

If the space is to be maximally symmetric, then it will certainly be spherically symmetric.

We already know something about spherically symmetric spaces from our exploration of the

Schwarzschild solution; the metric can be put in the form

dσ2 = gijdx
i dxj = e2β(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (23)

The components of the Ricci tensor for such a metric can be obtained from our cal-

culation of the Schwarzschild metric, where we calculated the Ricci tensor for a spherically

symmetric spacetime. By setting α = 0 and ∂0β = 0 in Equations 14 in the “Schwarzschild”

chapter, we get
(3)R11 = 2

r
∂1β

(3)R22 = e−2β(r∂1β − 1) + 1
(3)R33 = [e−2β(r∂1β − 1) + 1] sin2 θ .

(24)

We set these proportional to the metric using Equation 22, and can solve for β(r):

R11 =
2
r
∂rβ = 2kg11 = 2ke2β(r)

R22 = e−2β(r∂rβ − 1) + 1 = 2kg22 = 2kr2
(25)



– 7 –

by simple algebra, one can eliminate ∂rβ and obtain

β = −1

2
ln(1− kr2) . (26)

This gives us the following metric on spacetime:

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]

. (27)

This is the Robertson-Walker metric. Note that we have not yet made use of Einstein’s

equations; those will determine the behavior of the scale factor a(t).

Furthermore, we can substitute

k → k
|k|

r →
√

|k| r
a → a√

|k|

(28)

and leave Equation 27 invariant. Therefore the only relevant parameter is k/|k|, and there

are three cases of interest: k = −1, k = 0, and k = +1. The k = −1 case corresponds

to constant negative curvature on Σ, and is called open; the k = 0 case corresponds to no

curvature on Σ, and is called flat; the k = +1 case corresponds to positive curvature on Σ,

and is called closed.

Let us have a closer look at the three cases.

1. For the flat case k = 0 the metric on Σ is

dσ2 = dr2 + r2dΩ2

= dx2 + dy2 + dz2 ,
(29)

which is simply flat Euclidean space. Globally, it could describe R3 or a more compli-

cated manifold, such as the three-torus S1 × S1 × S1.

2. For the closed case k = +1 we can define r = sinχ to write the metric on Σ as

dσ2 = dχ2 + sin2 χdΩ2 , (30)

which is the metric of a three-sphere. In this case the only possible global structure is

actually the three-sphere (except for the non-orientable manifold RP3). This space is

known as de Sitter space.
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3. Finally in the open k = −1 case we can set r = sinhψ to obtain

dσ2 = dψ2 + sinh2 ψ dΩ2 . (31)

This is the metric for a three-dimensional space of constant negative curvature; it is

hard to visualize, but think of the saddle example we discussed when we introduced

curvature. Globally such a space could extend forever (which is the origin of the word

“open”), but it could also describe a non-simply-connected compact space (so “open”

is really not the most accurate description). This space is known as anti de Sitter

space.

4. Friedmann equations

The Robertson-Walker metric is the most general metric for which the spatial part is

maximally symmetric (homogeneous and isotropic), and is thus consistent with the cosmo-

logical principle. However, as you surely have noticed, so far we did not attempt to solve

Einstein’s equation. The solution to Einstein’s equation subject to the restrictions set by

the Robertson-Walker metric, will tell us the evolution of the scale factor, a(t).

We proceed as follows. First, we compute the connection coefficients and the curvature

tensor of the Robertson-Walker metric. Setting ȧ ≡ da/dt, the Christoffel symbols are given

by
Γ0
11 = aȧ

1−kr2
Γ0
22 = aȧr2 Γ0

33 = aȧr2 sin2 θ

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ
a

Γ1
11 = kr

1−kr2

Γ1
22 = −r(1− kr2) Γ1

33 = −r(1− kr2) sin2 θ

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
r

Γ2
33 = − sin θ cos θ Γ3

23 = Γ3
32 = cot θ .

(32)

The nonzero components of the Ricci tensor are

R00 = −3 ä
a

R11 = aä+2ȧ2+2k
1−kr2

R22 = r2(aä+ 2ȧ2 + 2k)

R33 = r2(aä+ 2ȧ2 + 2k) sin2 θ ,

(33)

and the Ricci scalar is then

R =
6

a2
(aä+ ȧ2 + k) . (34)
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Since the universe is not empty, we are not interested in vacuum solutions to Einstein’s

Equation. Instead, we consider a model in which the matter and energy in the universe are

described by a perfect fluid. This is of course in accordance with the cosmological principle.

Recall that perfect fluids were defined as fluids which are isotropic in their rest frame.

For such fluids, the energy-momentum tensor is written as

Tµν = (p+ ρ)UµUν + pgµν , (35)

where ρ and p are the energy density and pressure (respectively) as measured in the rest

frame, and Uµ is the four-velocity of the fluid. It is clear that, if a fluid which is isotropic in

some frame leads to a metric which is isotropic in some frame, the two frames will coincide;

that is, the fluid will be at rest in comoving coordinates. In these coordinates, the four-

velocity is then

Uµ = (1, 0, 0, 0) , (36)

and the energy-momentum tensor is

Tµν =









ρ 0 0 0

0

0 gijp

0









. (37)

With one index raised this takes the more convenient form

T µ
ν = diag(−ρ, p, p, p) . (38)

Note that the trace is given by

T = T µ
µ = −ρ+ 3p . (39)

We can now plug it in Einstein’s equations,

Rµν = 8πG

(

Tµν −
1

2
gµνT

)

. (40)

The µν = 00 equation is

− 3 ä
a
= 8πG

(

ρ+ 1
2
(−ρ+ 3p)

)

⇒ − 3 ä
a
= 4πG(ρ+ 3p) .

(41)

The µν = ij equations become

Rij = 8πG
(

gijp− 1
2
gij(−ρ+ 3p)

)

= 8πG
(

1
2
gijρ− 1

2
gijp

)

= 4πGgij(ρ− p)

(42)
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Note that the 9 (µν = ij) equations are in fact reduced to one distinct equation, due to

isotropy. Thus we can chose µν = 11, and get (using g11 = a2(t)/(1− kr2)),

ä

a
+ 2

(

ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) . (43)

We can use Equation 41 to eliminate second derivatives in Equation 43, and do a little

cleaning up to obtain
ä

a
= −4πG

3
(ρ+ 3p) , (44)

and
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
. (45)

Together, Equations 44 and Equation 45 are known as the Friedmann equations, and

metrics of the form (Equation 27) which obey these equations define Friedmann-Robertson-

Walker (FRW) universes.

5. Global properties of the universe

The second of Friedmann equations (equation 45) can be used to infer global properties

of the universe.

We first define the Hubble parameter, which characterizes the rate of expansion by

H ≡ ȧ

a
. (46)

Note that we have to divide ȧ by a to get a measurable quantity, since the overall scale of a

is irrelevant. We further define the deceleration parameter,

q = −aä
ȧ2

, (47)

which measures the rate of change of the rate of expansion.

Hubble’s parameter (which is time dependent!) at present day epoch is called

Hubble’s constant,

H0 ≡
(

ȧ

a

)

t=t0

= 70± 3 km s−1 Mpc−1 (48)

where “Mpc” stands for “megaparsec”, which is 3 × 1024 cm. The value quoted is based

on 7 year data release of the WMAP satellite in 2010. Hubble’s constant is extensively

measured since Hubble’s days (and you will understand shortly why its exact value is so
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important !). The recent measurement from the “Planck” mission released in 2018 is H0 =

67.66± 0.42 km s−1 Mpc−1,

With Hubble’s parameter, we can write Equation 45 as

1 =
8πG

3H2
ρ− k

a2H2
(49)

We can now define a quantity known as the critical density

ρcrit =
3H2

8πG
. (50)

which at present day epoch takes the value

ρcrit,0 =
3H2

0

8πG
=

{

9.21× 10−30 g cm−3

5.19× 103 eV cm−3 (51)

We can further define the density parameter,

Ω =
8πG

3H2
ρ =

ρ

ρcrit
, (52)

We can now understand the meaning of the term “critical” density (which changes with

time !), as we can write the Friedman Equation (equation 45, 49) as

Ω− 1 =
k

H2a2
. (53)

The sign of k is therefore determined by whether Ω is greater than, equal to, or less than

one. We have
ρ < ρcrit ↔ Ω < 1 ↔ k = −1 ↔ open

ρ = ρcrit ↔ Ω = 1 ↔ k = 0 ↔ flat

ρ > ρcrit ↔ Ω > 1 ↔ k = +1 ↔ closed .

The density parameter, then, tells us which of the three Robertson-Walker geometries de-

scribes our universe. Determining it observationally is an area of intense investigation.

6. Content of the universe

Before we can continue to discuss the evolution of the universe, let us first examine the

content of the universe.
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Consider the stress-energy tensor (Equation 38), and look at the zero component of the

conservation of energy equation:

0 = ∇µT
µ
0

= ∂µT
µ
0 + Γµ

µ0T
0
0 − Γλ

µ0T
µ
λ

= −∂0ρ− 3 ȧ
a
(ρ+ p) .

(54)

(where we have used the affine connections calculated in Equation 32).

To make progress it is necessary to choose an equation of state, a relationship between

ρ and p. Essentially all of the perfect fluids relevant to cosmology obey the simple equation

of state

p = wρ , (55)

where w is a constant independent of time. The conservation of energy equation becomes

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (56)

which can be integrated to obtain

ρ ∝ a−3(1+w) . (57)

The two most popular examples of cosmological fluids are known as dust and radiation.

Dust is collisionless, nonrelativistic matter, which zero pressure; hence w = 0. Examples

include ordinary stars and galaxies, for which the pressure is negligible in comparison with

the energy density. Dust is also known as “matter”, and universes whose energy density is

mostly due to dust are known as matter-dominated. The energy density in matter falls

off as

ρm ∝ a−3 . (58)

This is simply interpreted as the decrease in the number density of particles as the universe

expands. (For dust the energy density is dominated by the rest energy, which is proportional

to the number density.)

“Radiation” may be used to describe either actual electromagnetic radiation, or massive

particles moving at relative velocities sufficiently close to the speed of light that they become

indistinguishable from photons (at least as far as their equation of state is concerned). There

are various ways to derive the equation of state for radiation. One is to note that Tµν can

be expressed in terms of the EM field strength as

T µν =
1

4π
(F µλF ν

λ −
1

4
gµνF λσFλσ) . (59)
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The trace of this is given by

T µ
µ =

1

4π

[

F µλFµλ −
1

4
(4)F λσFλσ

]

= 0 . (60)

Thus, the trace of stress energy tensor is 0; putting this in Equation 39 (T = −ρ+ 3p), the

equation of state for radiation is

p =
1

3
ρ . (61)

This result could be derived in more than one way, of course. An alternative derivation is

to recall that the momentum of photons / relativistic particles is related to their energy by

E = ~pc. The pressure exerted by N molecules of relativistic gas in a 3-d container of volume

V on a wall is

p =
1

3

N

V
〈~p · ~v〉 = 1

3

N

V
〈E〉 = ρ

3
.

A universe in which most of the energy density is in the form of radiation is known as

radiation-dominated. The energy density in radiation falls off as

ρR ∝ a−4 . (62)

Thus, the energy density in radiation falls off slightly faster than that in matter; this is

because the number density of photons decreases in the same way as the number density of

nonrelativistic particles, but individual photons also lose energy as a−1 as they redshift, as

we will see later. (Likewise, massive but relativistic particles will lose energy as they “slow

down” in comoving coordinates.) We believe that today the energy density of the matter /

radiation in the universe is dominated by matter, with ρmat/ρrad ∼ 103. However, in the past

the universe was much smaller, and the energy density in radiation would have dominated

at very early times.

The final form of energy-momentum which we should consider is that of the vacuum

itself: this is the addition of the cosmological constant in Einstein’s equation. Recall that

Einstein’s equations with a cosmological constant are

Gµν = 8πGTµν − Λgµν , (63)

which is clearly the same form as the equations with no cosmological constant but an energy-

momentum tensor for the vacuum,

T (vac)
µν = − Λ

8πG
gµν , (64)

as Einstein’s equation reads Gµν = 8πG(Tµν + T
(vac)
µν ). Neglecting any term but the vacuum

itself, this has the form of a perfect fluid with

ρ = −p = Λ

8πG
. (65)



– 14 –

We therefore have w = −1, and the energy density is independent of a,

ρΛ ∝ a0. (66)

This is what we would expect for the energy density of the vacuum. Since the energy

density in matter and radiation decreases as the universe expands, if there is a nonzero

vacuum energy it tends to win out over the long term (as long as the universe doesn’t start

contracting). If this happens, we say that the universe becomes vacuum-dominated.

Current measurements (based on 2018 data released from “Planck” mission) give: ΩΛ =

0.6911, ΩCDM = 0.3089, where “CDM” stands for “cold dark matter”, out of which the

observed baryons (radiating matter) is Ωb = 0.0486, and Ωrad is negligible.
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