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1. Asymptotic behavior of the universe

The Robertson-Walker metric,

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]

. (1)

is the most general metric that describes a universe which is spatially homogeneous and

isotropic, namely its spatial term is maximally symmetric. The curvature constant k can

get three values, k = −1, 0,+1 describing an open, flat and closed universes, respectively.

The scale factor a(t) is obtained by using this metric in Einstein’s equation,

Gµν = 8πGTµν − Λgµν . (2)

The results are two equations,
ä

a
= −4πG

3
(ρ+ 3p) , (3)

and
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (4)

which are known together as Friedmann Equations. These equations describe the evolu-

tion of the scale factor, hence of the universe as a whole.

1.1. The Big Bang

While it is possible to solve the Friedmann equations exactly in various simple cases, it

is often more useful to know the qualitative behavior of various possibilities.
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Consider first a universe with no cosmological constant: Λ = 0. Consider the behavior

of universes filled with fluids of positive energy (ρ > 0) and nonnegative pressure (p ≥ 0).

By the first of Friedmann’s equations (Equation 3) we must have ä < 0. Since we know from

observations of distant galaxies that the universe is expanding (ȧ > 0), this means that the

universe is “decelerating” namely, the expansion rate is decreasing.

This is what we should expect, since the gravitational attraction of the matter in the

universe works against the expansion. The fact that the universe can only decelerate means

that it must have been expanding even faster in the past; if we trace the evolution backwards

in time, we necessarily reach a singularity at a = 0. Notice that if ä were exactly zero, a(t)

would be a straight line, and the age of the universe would be H−1
0 . Since ä is actually

negative, the universe must be somewhat younger than that. This is demonstrated in Figure

1.

Fig. 1.— In a universe with no cosmological constant, we know that it is expanding (ȧ > 0)

and decelerating (ä < 0). Thus, there must have been a point in the past when a = 0. This

is the Big Bang.

This singularity at a = 0 is the Big Bang. It represents the creation of the universe

from a singular state, not explosion of matter into a pre-existing spacetime.

It might be hoped that the perfect symmetry of our FRW universes was responsible for

this singularity, but in fact it’s not true; the singularity theorems predict that any universe

with ρ > 0 and p ≥ 0 must have begun at a singularity. Of course the energy density becomes

arbitrarily high as a → 0, and we don’t expect classical general relativity to be an accurate

description of nature in this regime; hopefully a consistent theory of quantum gravity will

be able to fix things up.
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1.2. Future evolution: open and flat universes

The future evolution is different for different values of k. For the open and flat cases,

k ≤ 0, The second of Friedmann’s equations, Equation 4 implies

ȧ2 =
8πG

3
ρa2 + |k| . (5)

The right hand side is strictly positive (since we are assuming ρ > 0), so ȧ never passes

through zero. Since we know that today ȧ > 0, it must be positive at all time. Thus, the

open and flat universes expand forever — they are temporally as well as spatially

open. (Please keep in mind what assumptions go into this — namely, that there is a nonzero

positive energy density, ρ > 0. Negative energy density universes do not have to expand

forever, even if they are “open”.)

How fast do these universes keep expanding? Consider the quantity ρa3 (which is

constant in matter-dominated universes). Recall that we wrote the energy conservation

equation as

0 = ∇µT
µ
0 = −∂0ρ− 3

ȧ

a
(ρ+ p) . (6)

By simple algebra, we can write this equation in the form

d

dt
(ρa3) = −3a2ȧp . (7)

The right hand side is either zero or negative; therefore

d

dt
(ρa3) ≤ 0 . (8)

Thus, in an ever-expanding universe, where a → ∞ Equation 8 implies that ρa2 must go to

zero in the limit a → ∞. From Equation 5 we thus find that in this limit

ȧ2 → |k| . (9)

(Remember that this is true for k ≤ 0.) Thus, for k = −1 the expansion approaches the

limiting value ȧ → 1, while for k = 0 the universe keeps expanding, but more and more

slowly (note that any power law expansion of the form a(t) ∝ tα with 0 ≤ α < 1 results in

an asymptotic limit ȧ → 0).

1.3. Future evolution: closed universes

For the closed universes (k = +1), Equation 4 becomes

ȧ2 =
8πG

3
ρa2 − 1 . (10)
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The argument that ρa2 → 0 as a → ∞ still applies; but in that case, the right hand side of

Equation 10 would become negative, which can’t happen. Therefore the universe does not

expand indefinitely; a possesses an upper bound amax. As a approaches amax, the first of

Friedmann’s equations (Equation 3) implies

ä → −4πG

3
(ρ+ 3p)amax < 0 . (11)

Thus ä is finite and negative at this point, so a reaches amax and starts decreasing, whereupon

(since ä < 0) it will inevitably continue to contract to zero — the Big Crunch. Thus, the

closed universes (again, under our assumptions of positive ρ and nonnegative p) are closed

in time as well as space (see Figure 2).

Note that a universe for which Ω > 1 is necessarily closed (see “Cosmology”, part I,

Equation 53), while a universe for which Ω < is open. In Figure 2, plotted is the evolution of

the scale factor (or the average distance between the galaxies) for different values of Ωm and

Ωv ≡ ΩΛ, where k = 0 and ΩR = 0 are taken. For Ω = Ωm + ΩV > 1 (yellow) the universe

is closed; for Ω = 1 (green) it is flat, while for Ω < 1 (blue) it is open. Current observations

suggest ΩV = 0.7 and Ωm = 0.3 (red), in which case the universe accelerates- see below.

Fig. 2.— The fate of the universe depends on its curvature, and the values of the density

parameters. A close universe (k = 1) will end in a “crunch”, while an open or flat universes

(k = −1, 0) will expand forever. Current observations suggest that the universe does not

only expands, but accelerates - see further discussion below.

It is often common to define a fictitious energy density associated with the spatial
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curvature by

ρc ≡ − 3k

8πGa2
(12)

with a corresponding density parameter

Ωc = − k

H2a2
. (13)

Using these variables, Friedmann Equation (Equation 4) is written as

H2 =
8πG

3

∑

i

ρi (14)

where ρi ≡ ρm , ρR , ρΛ , ρc. Alternatively, dividing both sides by H2 this equation is

written as

1 =
∑

i

Ωi. (15)

Note that by no means ρi must all be non-negative. While matter and radiation arise from

dynamical particles and fields, and so we do expect that ρm and ρR be positive, we cannot

say anything about the vacuum and the curvature, ρΛ and ρc.

2. The cosmological redshift

Because of the time dependence of the scale factor a(t), the FRW metric is not static.

Since a(t) multiplies the spatial coordinates, any proper distance l(t) will change with time

in proportion to a(t):

l(t) = l0a(t) ∝ a(t) , (16)

where l0 is the comoving distance between two (static) observers. In particular, the proper

separation between any two observers, located at constant comoving coordinates, will change

with time. Let the coordinate separation between two such observers (lets say, located at

nearby galaxies) be δr, so that the proper separation is δl = a(t)δr. Each of the two observers

will attribute to the other a velocity

δv =
d

dt
δl = ȧδr =

(

ȧ

a

)

δl (17)

This leads to several important physical consequences of rather generic nature.

Consider a narrow pencil of electromagnetic radiation which crosses any two comoving

observers, separated by proper distance δl. The transit time is δt = δl/c. Let the frequency
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of radiation measured by the first observer be ω. Since the first observer sees the second

one receding with velocity δv, he expected the second observer to measure a Doppler shifted

frequency (ω + δω) where

δω

ω
= −δv

c
= −

(

ȧ

a

)

δl

c
= −

(

ȧ

a

)

δt = −δa

a
(18)

(we have assumed that the two observers are separated by infinitesimal distance of first

order δl, therefore we could introduced locally inertial frame encompassing both observers;

the laws of special relativity can be applied in this frame).

Equation 18 can be integrated to give

ω(t)a(t) = constant . (19)

In other words, the frequency of electromagnetic radiation changes due to the expansion of

the universe according to the law ω ∝ a−1. Note that we have made implicit use of the

homogeneity of the spacetime in extending the local result to a global context.

Thus, a photon emitted with frequency ω1 will be observed at some later time with a

lower frequency ω0 as the universe expands:

ω0

ω1

=
a1
a0

. (20)

Cosmologists like to speak of this in terms of the redshift z between the two events, defined

by the fractional change in wavelength:

z = λ0−λ1

λ1

= a0
a1

− 1 .
(21)

Notice that this redshift is not the same as the conventional Doppler effect; it is the expansion

of space, not the relative velocities of the observer and emitter, which leads to the redshift.

The redshift is something we can measure; we know the rest-frame wavelengths of various

spectral lines in the radiation from distant galaxies, so we can tell how much their wavelengths

have changed along the path from time t1 when they were emitted to time t0 when they were

observed. We therefore know the ratio of the scale factors at these two times. But we don’t

know the times themselves; the photons are not clever enough to tell us how much coordinate

time has elapsed on their journey. We have to work harder to extract this information.

However, using the definition of the redshift in Equation 21 with a0 ≡ a(t = t0) is the

scale factor today, the redshift z is often used to replace the time coordinate t or the value

of the scaling factor a(t) at that time.
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The same argument holds when considering the motion of massive particles. Consider

again two comoving observers separated by proper distance δl. Let a massive particle pass

the first observer with velocity v. When the particle crossed the proper distance δl (in time

interval δt), it passed the second observer, whose velocity (relative to the first one) is

δu =
ȧ

a
δl =

ȧ

a
vδt = v

δa

a
(22)

The second observer will attribute to the particle the velocity

v′ =
v − δu

1− vδu
= v − (1− v2)δu+O[(δu)2] = v − (1− v2)v

δa

a
, (23)

where we have used the special-relativistic formula for addition of velocities, which is valid

in the infinitesimal regime around the first observer. Rewriting this equation as

δv = −v(1− v2)
δa

a
(24)

and integrating, we get

p =
v√

1− v2
=

constant

a
(25)

In other words, the magnitude of the 3-momentum decreases as a−1 due to the expansion. For

non-relativistic particles, v ∝ p and the velocity itself decays as a−1. The particle therefore

“slows down” with respect to the comoving coordinates as the universe expands. This is an

actual slowing down, in the sense that a gas of particles with initially high relative velocities

will cool down as the universe expands.

3. Distance measurement in the universe

Roughly speaking, since a photon moves at the speed of light its travel time should

simply be its distance. But what is the “distance” of a far away galaxy in an expanding

universe? The comoving distance is not especially useful, since it is not measurable, and

furthermore because the galaxies need not be comoving in general. Instead we can define

the luminosity distance as

d2L =
L

4πF
, (26)

where L is the absolute luminosity of the source and F is the flux measured by the observer

(the energy per unit time per unit area of some detector). The definition comes from the

fact that in flat space, for a source at distance d the flux over the luminosity is just one over

the area of a sphere centered around the source, F/L = 1/A(d) = 1/4πd2.
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In an FRW universe, however, the flux will be diluted. Conservation of photons tells us

that the total number of photons emitted by the source will eventually pass through a sphere

at comoving distance r from the emitter. Such a sphere is at a physical distance d = a0r,

where a0 is the scale factor when the photons are observed.

But the flux is diluted by two additional effects: the individual photons redshift by a

factor (1 + z) (=their energy is decreased), and the photons hit the sphere less frequently,

since two photons emitted a time δt apart will be measured at a time (1 + z)δt apart.

Therefore we will have
F

L
=

1

4πa20r
2(1 + z)2

, (27)

or

dL = a0r(1 + z) . (28)

The luminosity distance dL is something we might hope to measure, since there are some

astrophysical sources whose absolute luminosities are known (“standard candles”). But r is

not observable, so we have to remove that from our equation.

Before we do that, we note that another observable parameter for distant sources is the

angular diameter. Consider a distant object of physical size D (say, a distant galaxy)

which emits photons at comoving time t1. These photons are observed at time t0. Assume

that the object subtends an angle δ to the observer, then, for small δ, we have D = ra(t1)δ.

The ’angular diameter distance’, dA(z) for the source is defined via the relation δ = (D/dA);

so, we find that

dA(z) = ra(t1) = a0r(t1)(1 + z)−1 . (29)

Clearly, dL = (1 + z)2dA.

Let us return to the problem of expressing dL (and dA) in terms of measurable quantities,

namely that do not contain r, which is not measurable. From the FRW metric on a null

geodesic (chosen to be radial for convenience) we have

0 = ds2 = −dt2 +
a2

1− kr2
dr2 , (30)

or
∫ t0

t1

dt

a(t)
=

∫ r1

0

dr

(1− kr2)1/2
=







sin−1(r1) ; k = +1,

r1 ; k = 0,

sinh−1(r1); k = −1.

. (31)

For galaxies not too far away, we can expand the scale factor in a Taylor series about its

present value:

a(t1) = a0 + (ȧ)0(t1 − t0) +
1
2
(ä)0(t1 − t0)

2 + . . .

= a0
[

1 +
(

ȧ
a

)

0
(t1 − t0) +

1
2

(

ä
a

)

0
(t1 − t0)

2 + . . .
]

= a0
[

1 +H0(t1 − t0)− 1
2
q0H

2
0 (t1 − t0)

2 + . . .
]

,

(32)
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where we have used the definition of Hubble’s constant and the deceleration parameter,

H0 ≡
(

ȧ

a

)

t=t0

; q0 ≡ −
(

aä

ȧ2

)

t=t0

. (33)

We can now use Taylor expansion in both sides of Equation 31 (Keeping only the leading

term in the right hand side, and use Equation 32 on the left hand side), to find

r = a−1
0

[

(t0 − t1) +
1

2
H0(t0 − t1)

2 + . . .

]

. (34)

Recalling that (1 + z) = a0/a(t1), Equation 32 takes the form

1

1 + z
= 1 +H0(t1 − t0)−

1

2
q0H

2
0 (t1 − t0)

2 + . . . . (35)

For small H0(t1 − t0) this can be inverted to yield

t0 − t1 = H−1
0

[

z −
(

1 +
q0
2

)

z2 + . . .
]

. (36)

Substituting this back again into Equation 34 gives

r =
1

a0H0

[

z − 1

2
(1 + q0) z

2 + . . .

]

. (37)

Finally, using this in Equation 28 (dL = a0r(1 + z)), yields Hubble’s Law:

dL = H−1
0

[

z +
1

2
(1− q0)z

2 + . . .

]

. (38)

Therefore, measurement of the luminosity distances and redshifts of a sufficient number of

galaxies allows us to determine H0 and q0, and therefore takes us a long way to deciding

what kind of FRW universe we live in.

4. Evolution of the scale factor a(t)

We can solve Friedmann’s Equation (Equation 4) and obtain the evolution of a(t) in the

various scenarios. Since the universe is composed of matter, radiation and vacuum energy,

the evolution depends on answering two questions: (i) whether the universe is flat, open or

closed; and (ii) what is the dominant energy content of the universe.

In Cosmology part I, we showed that for all three ingredients (matter, radiation and

vacuum energy), we can write the equation of state in the form p = ωρ, from which the
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conservation of energy becomes

p = ωρ ⇒ ρ ∝ a−3(1+ω) ⇒







ρm ∝ a−3 [ω = 0]

ρr ∝ a−4 [ω = 1/3]

ρΛ ∝ a0 [ω = −1]

(39)

Where ρr is the energy density in both radiation and relativistic matter, ρm is the energy

density in non-relativistic matter and ρΛ is the vacuum energy density. Thus,

ρm(t) = ρm(t0)
(a0
a

)3

= ρcΩm(1 + z)3 (40)

where Ωm ≡ ρm,0/ρc; ρc = ρcrit,0 = 3H2
0/8πG is the critical density; and the subscript 0

represent present time values.

Similarly,

ρr(t) = ρr(t0)
(a0
a

)4

= ρcΩr(1 + z)4, (41)

and

ρΛ(t) = ρΛ(t0). (42)

Observations suggest that at present epoch

Ωtotal ≡ Ω ≃ 1; Ωm ∼ 0.3 Ωr ≃ 8.2× 10−5 (43)

Thus, at present, matter dominates over radiation (and vacuum over both). But when

looking into equations 40, 41 and 42, clearly when looking at the past (z increases), radiation

energy density grows faster than matter (and vacuum) energy densities as we go to earlier

phases of the universe. At some time, t = teq in the past (corresponding to a value a = aeq
and redshift z = zeq) the radiation and matter have had equal energy densities. From

Equations 40, 41 and 43 we get

(1 + zeq) =
a0
aeq

=
Ωm

Ωr

≃ 3.6× 103 (44)

Since the temperature of the radiation grows as a−1 (recall Stefan-Boltzmann’s law, T 4 ∝
ρr ∝ (1 + z)4), the temperature of the universe at this epoch was

Teq = T0(1 + zeq) = 2.7× 5.8× 103 ≃ 1.0× 104
◦
K = 0.9 eV (45)

where T0 = 2.7◦ K is the temperature of the CMB radiation.

We can now solve Friedmann Equation (Equation 4) for various geometries and contents

of the universe. Let us focus on the flat universe (k = 0). For matter dominated universe,

we find

a(t) =

(

9

4

8πG

3
Ωmρca

3
0

)1/3

t2/3, (46)
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while for radiation-dominated flat universe

a(t) =

(

4× 8πG

3
Ωrρca

4
0

)1/4

t1/2. (47)

Clearly, at very early times, t ≪ teq, the energy density of the universe is dominated by

radiation, while at later times, t ≫ teq it is dominated by matter. Given that we can

consider present day epoch as being matter-dominated, the Equilibrium time, teq is easily

obtained using Equations 44 and 46.

For universe which is dominated by positive vacuum energy density, ρΛ = Λ/8πG, the

solution (for closed, flat and open universes) is

a(t) ∝



















sinh
[

(

Λ
3

)1/2
t
]

(k = −1)

exp
[

±
(

Λ
3

)1/2
t
]

(k = 0)

cosh
[

(

Λ
3

)1/2
t
]

(k = +1)

(48)

All these solutions represent, in fact, the same space-time, just in different coordinates. This

spacetime is known as de Sitter space, which is maximally symmetric. Solution also exists

with Λ < 0, which is known as anti de Sitter space.

5. Observational evidence

As usual in physics, we cannot accept any theory - regardless how mathematically

beautiful it may be, without strong experimental or observational support. The “big bang”

theory is strongly supported by 5 independent measurements.

1. Hubble’s law of expansion. Historically, the first observational evidence (excluding

the fact that the skies are dark) was Hubble’s law (Equation 38, discovered in 1929
1. From redshift measurements Hubble determined the radial velocities of 24 galaxies,

for which he could estimate their distance.

2. The cosmic microwave background (CMB) radiation. We will discuss this

shortly.

Briefly, CMB is landmark evidence of the Big Bang origin of the universe. When the

universe was young, before the formation of stars and planets, it was denser, much

1In fact, it we predicted by Georges Lemaitré 2 years earlier, in 1927
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Fig. 3.— Hubble’s expansion law, as taken from his original paper in 1929. The distance is

measured in millions of parsecs (1pc = 3× 1018 cm) and the velocity in km/s

hotter, and filled with a uniform glow from a white-hot fog of hydrogen plasma. As

the universe expanded, both the plasma and the radiation filling it grew cooler. When

the universe cooled enough, protons and electrons combined to form neutral hydrogen

atoms. Unlike the uncombined protons and electrons, these newly conceived atoms

could not scatter the thermal radiation by Thomson scattering, and so the universe

became transparent instead of being an opaque fog; this is known in cosmology as

recombination.

At this stage, the photons decouple the plasma. These photons are propagating in

the universe ever since, growing fainter and less energetic, due to the continuous ex-

pansion of space. They are isotropic2 and filled the entire space, having black-body

spectrum with temperature today of T = 2.726 ◦K. As such, the spectral peak is at

160 GHz, which is in the microwave range of frequencies. These photons are the oldest

electromagnetic radiation that can be observed in the universe.

The cosmic microwave background was first predicted in 1948 by Ralph Alpher and

Robert Herman. It was discovered in 1964 by Arno Penzias and Robert Wilson, who

received the 1978 Nobel prize in physics for their discovery.

3. Primordial abundances of light elements. (Another name for that is “big bang

nucleosynthesis”). While all the elements heavier than lithium were produced in the

cores of stars, the light elements in our universe- namely, hydrogen (1H), deuterium

(2D), helium (4He) and its isotope helium-3 (3He) and a very small amount of lithium

2anisotropy is seen at a level of 1 : 105.
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7 (7Li) (as well as a few unstable isotopes) were all formed within the first 20 minutes

of the big bang.

The theory (see below) provides an excellent prediction for their relative abundances as

is observed in the universe. The relative abundances depend on a single parameter, the

ratio of photons to baryons. Roughly, the mass fraction of Helium 4 (4He) to hydrogen

in the universe is 0.245, and the other rations are

(

D
H

)

p
= 3.6× 10−5,

(

3He
H

)

p
= 1.2× 10−5,

(

7Li
H

)

p
= 1.2× 10−11.

Below I provide some basic description of these calculations.

4. Galactic evolution and distribution. Although the universe was initially nearly

homogeneous, small fluctuations grew with time to form larger and larger objects -

eventually, the galaxies (and clusters of galaxies) we observe. This process is known

as “structure formation”. A natural outcome is that the structure and morphologies

of galaxies evolve over cosmic times, from the time they were “born”, until today.

As populations of stars have been aging and evolving, so that distant galaxies (which are

observed as they were in the early universe) appear very different from nearby galaxies

(observed in a more recent state). Moreover, galaxies that formed relatively recently,

appear markedly different from galaxies formed at similar distances but shortly after

the Big Bang. These observations are strong arguments in favor of the big bang model,

and against the alternative steady-state model. Observations of star formation, galaxy

and quasar distributions and larger structures, agree well with Big Bang simulations

of the formation of structure in the universe, and are helping to complete details of the

theory.

5. Baryon acoustic oscillations (BAO). These are fluctuations in the density of the

visible baryonic matter (normal matter) of the universe, caused by acoustic density

waves in the primordial plasma of the early universe. These oscillations provide a

”standard ruler” for length scale, which is given by the maximum distance the acoustic

waves could travel in the primordial plasma before the plasma cooled to the point where

it became neutral atoms (the epoch of recombination). At this point, the expansion

of the plasma density waves stopped, ”freezing” them into place. The length of this

standard ruler (≈ 490 million light years in today’s universe) can be measured by

looking at the large scale structure of matter using astronomical surveys.
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These oscillations are imprinted on the CMB as small (∼ 10−5) fluctuations in the

observed temperature. These fluctuations are not entirely random, but are correlated

between different angles in space (see below, if we have time). They appear as location

of peaks when looking at the power spectrum of CMB fluctuations. The location

and relative height of the peaks are determined by the cosmological parameters, and

provide an independent measure of their values.

6. Thermal history of the Universe

As stated above, one of the triumphs of modern cosmology is its ability to predict

the relative abundances of light elements in the universe, as well as the different structures

that are observed when measuring the fluctuations within the cosmic microwave background

(CMB); these fluctuations indicate relative abundances of matter.

By simply applying the rates for nuclear reactions that are measured in the laboratory

to a plasma of the correct baryon density in an expanding universe roughly a few seconds to

minutes after the big bang (at temperatures T ∼ 0.1− 10 MeV), we find that the neutrons

and protons in the universe organize themselves into roughly 75% hydrogen and 25% helium

(by mass), with calculable trace abundances of deuterium and 7Li. The predictions are in

excellent agreement with the observations, and the success of the theory allows us to place

important constraints to the content and evolution of the universe just seconds after the big

bang.

Going back in time, when the redshift was higher than zeq ∼ 3.6× 103, the universe was

dominated by radiation. In the radiation dominated phase of the universe, its temperature

was T > Teq ∼ 1 eV, and it changed with time according to T ∝ a−1 ∝ (1 + z).

At these times, the content of the universe was different than today. Atomic and nuclear

structure have binding energies of the order of few tens eV and MeV, respectively. Thus,

when the temperature of the universe was higher than these values, atoms and nucleons could

not have existed as bound objects. Going even further back in time, when the temperature

of the photons exceeded the rest mass of the electrons (me ∼ 0.5 MeV), the photons energy

was high enough to produce large numbers of electrons and positrons. These particles had

the same typical temperature (T ), making them ultra-relativistic.

Thus, as a function of temperature, T (or time, t), the universe would be populated by

different types of elementary particles. To work out the physical processes at some time t,

we need to know the distribution functions fA(~x, ~p, t) ≡ fA(~p, t) of these particles. Here, A

labels the different species of particles. The dependence of fA on ~x is excluded, because of
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the homogeneity of the universe.

We can get the distribution function fA(~p, t) by noting that the different species interact

constantly through the various processes, scattering each other and exchanging energy and

momentum. As long as the rate of this reactions Γ(t) = nσv (n is the density, v is the

velocity and σ is the cross section) is much higher than the rate of expansion of the universe,

H(t) = ȧ/a, these interactions produce and maintain thermodynamic equilibrium, with

all interacting particles having the same temperature, T (t). We can thus assume that the

particles may be treated as ideal Bose or Fermi gas, for which the distribution function is

given by

fA(~p, t)d
3p =

gA
(2π)3

1

e
E~p−µA

TA(t) ± 1

d3p (49)

where the upper sign (+1) corresponds to Fermions, while the lower sign (-1) to Bosons.

Here, gA is the spin degeneracy factor of the species, µA(T ) is the chemical potential, E~p =

(~p2 +m2)1/2 and TA(t) is the temperature of the species at time t.

At any instant in time, the universe also contains black body distribution of photons,

with temperature Tγ(t). If a particular species of particles is coupled to the photons (namely,

ΓAγ ≫ H), then these particles will have the same temperature as the photons, TA = Tγ .

Since this is usually the case, the photon temperature is often referred to as “the temperature

of the universe”.

As the universe expands, its temperature decreases; furthermore, the number density of

particles decreases, and so gradually particles decouple from each other. Once a species A

is completely decoupled, all the particles of that species no longer interact (efficiently) with

other particles, and they simply move along geodesics. After decoupling, the distribution

function freezes; thus, denoting the decoupling time by t = tD, where a = aD, the distribution

function at t > tD is given by

fdec(p, t) = fequi

(

p
a(t)

aD

)

(50)

where fequi is the distribution function just before decoupling, and we considered the fact

that all particles with momentum p at time t must have had momentum p[a(t)/aD] at tD.

Given the distribution function, the number density, n, energy density, ρ and pressure,

p are given by (omitting the subscript A and the time dependence for clarity)

n =

∫

f(~k)d3k =
g

(2π2)

∫ ∞

m

(E2 −m2)1/2EdE

e
E−µ
T ± 1

(51)

ρ =

∫

Ef(~k)d3k =
g

(2π2)

∫ ∞

m

(E2 −m2)1/2E2dE

e
E−µ
T ± 1

(52)
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and

p =

∫

1

3

|~k|2
E

f(~k)d3k =
g

(6π2)

∫ ∞

m

(E2 −m2)1/2dE

e
E−µ
T ± 1

(53)

(I use here ~k to denote momentum, when the pressure is denoted by p). The last equation is

obtained by recalling that from the definition of the stress-energy tensor, T αβ = kαdxβ/dt =

kαkβ/E and for an isotropic fluid p = T ii/3.

The above expressions for n, ρ and p simplify considerably in some limiting cases. When

the particles are highly relativistic (T ≫ m) and non-degenerate (T ≫ µ), we get:

ρ ≃ g

(2π2)

∫ ∞

m

E3dE

e
E
T ± 1

=

{

gB(π
2/30)T 4 (Bosons)

7
8
gF (π

2/30)T 4 (Fermions)
(54)

We can therefore express the total energy density contributed by all relativistic species as

ρtotal =
∑

Bosons

gi

(

π2

30

)

T 4
i +

∑

Fermions

7

8
gi

(

π2

30

)

T 4
i = gtotal

(

π2

30

)

T 4 (55)

where

g ≡ gtotal =
∑

Bosons

gi

(

Ti

T

)4

+
7

8

∑

Fermions

gi

(

Ti

T

)4

. (56)

Note that we have considered the possibility that not all the species have the same temper-

ature. If all the species have the same temperature, we have gtotal = gB + 7
8
gF . Furthermore,

the units used here are such that the radiation (Bolzmann’s) constant is aB = 1.

The pressure due to the relativistic species is p ≃ ρ/3 = g(π2/90)T 4. The number

density can be found in a similar way:

n ≃ g

(2π2)

∫ ∞

m

E2dE

e
E
T ± 1

=

{

(ζ(3)/π2)gBT
3 (Bosons)

3
4
(ζ(3)/π2)gFT

3 (Fermions)
(57)

where ζ(3) ≈ 1.202 is the Riemann zeta function of order 3. Combining equations (54) and

(57), we find that the mean energy per particle, 〈E〉 = ρ/n is ≈ 2.70T for Bosons, and

≈ 3.15T for Fermions.

In the opposite limit, T ≪ m, the exponential in equation (49) is ≫ 1. In this limit,

for both Bosons and Fermions one gets

n ≃ g

2π2

∫ ∞

0

p2dpe−
m−µ
T e−

p2

2mT = g

(

mT

2π

)3/2

e−
m−µ
T (58)

In this limit, ρ ≃ nm, and p = nT ≪ ρ.
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Comparison of equations (57) and (58) shows that the number (and energy) density of

non-relativistic particles are exponentially damped by a factor exp(−m/T ) with respect to

that of relativistic particles. Thus, at very early times, at t < teq., in the radiation

dominated phase, we may ignore the contribution of non-relativistic particles to

the energy density, ρ.

During the radiation dominate phase, a(t) ∝ t1/2, and thus

(

ȧ

a

)2

= H2(t) =
1

4t2
=

8πG

3
ρ =

8πG

3
g

(

π2

30

)

T 4 (59)

We can write this in terms of Planck energy, which provides a natural energy unit, EPl =
√

~c5

G
, or (using c = ~ = 1) mPl = G−1/2 = 1.22× 1019 GeV,

H(t) = 1.66g1/2
(

T 2

mPl

)

, (60)

and

t ≃ 0.3g−1/2
(mPl

T 2

)

∼ 1

(

T

1 MeV

)−2

g−1/2 sec. (61)

Remember that the factor g in these expressions counts the degrees of freedom of those par-

ticles which are still relativistic at the given temperature, T . As the temperature decreases,

more and more particles become non relativistic, and g decreases; thus, g = g(T ) is a slowly

varying function of T . I provide in the appendix the full list of particles in the standard

model, together with their masses and degeneracy, from which we calculate which of the

particles contribute to the global degeneracy at each temperature.

• For T ≪ MeV, the only relativistic particles are the three neutrino species, and the

photons. Thus we have 2 degrees of freedoms for the Bosons - photons [polarizations],

and 6 degrees of freedom for the Fermions = neutrinos (3 neutrino + anti-neutrino

species) ; since Tν = (4/11)1/3Tγ (see appendix), we have

g(T ≪ MeV) = 2 +
7

8
× 3× 2×

(

4

11

)4/3

= 3.36 (62)

• For MeV . T . 100MeV, the electron and positron add additional relativistic degrees

of freedom, (and each one with 2 spins, so total addition of 4 Fermionic degrees of

freedom), and one obtains

g(MeV . T . 100 MeV) = 10.75 (63)
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• For T ≫ 300 GeV, all species of the standard model are relativistic, and thus

g(T & 300 GeV) = 106.75 (64)

The key to understand the thermal history of the universe is the comparison of particle

interaction rates to the expansion rate. So long as the interactions necessary for particle

distribution functions to adjust to the changing temperature are rapid compared to the

expansion rate, the universe will, to a good approximation, evolve through a succession of

nearly thermal states with temperature decreasing like a−1.

We can now describe the thermal history of the early universe. Note that we cannot go

backward beyond the Planck epoch, t ∼ 10−43 s, and T ∼ 1019 GeV (the Planck energy)-

the point at which quantum corrections to GR should render it invalid.

At the earliest time, the universe was a plasma of relativistic particles, including quarks,

leptons gauge bosons and Higgs bosons. If current ideas are correct, a number of spontaneous

symmetry breaking (SSB) phase transition took place during the course of the early history

of the universe. They perhaps include the GUT phase transition at T ∼ 1016 GeV, and the

electroweak phase transition at T ∼ 300 GeV. During these SSB phase transitions, some

gauge bosons and matter particles acquire mass through the Higgs mechanism and the full

symmetry is broken to lower symmetry. At temperature of about T ∼ 100 − 300 MeV

(t ∼ 10−5 s), the universe undergoes a transition associated with chiral symmetry breaking

and color confinement, after which strongly-interacting particles confine into color singlets

combinations - namely, baryons and mesons.

The epoch of nucleosynthesis follows when t ∼ 10−2 − 102 s (T ∼ 10 − 0.1 MeV).

Neutrons and protons first combine to form D, 4He, 3He, and 7Li nuclei. Quite remarkably,

the theory for this is very well developed and agrees very impressively with a variety of

observations. At present, nucleosynthesis is the earliest test of standard cosmology.

At time of about 1012 s (T ∼ 1 eV), the energy density in matter becomes equal to that

in radiation, and the universe becomes matter dominated. This further marks the beginning

of structure formations. Finally, at time of ∼ 1013 s, (T ∼ 0.1 eV), ions and electrons

combine to form atoms: this is known as recombination. When it happens, matter and

radiation decouple, ending the long epoch of thermal equilibrium that existed in the early

universe. The surface of last scattering for the microwave background radiation (CMB) is

the universe itself at decoupling, which occurred at zdec ≈ 1180 (Tdec ∼ 3220◦ K, or 0.28

eV), which occurred when the universe was 378,000 years old.
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A. Elementary particles and degrees of freedom

The total number of (effective) degrees of freedom is a function of the temperature of

the universe, as well as the particle content of it. In Table 1 I give a list of all the known

particles within the standard model of particle physics, their masses and degeneracies.

Species name mass degrees of freedom Total

Quarks u, ū 15-3.0 MeV spin=1/2 g = 2*2*3=12

d, d̄ 3-5 MeV 3 colors

s, s̄ 95 MeV

c, c̄ 1.25 GeV

b, b̄ 4.2 GeV

t, t̄ 175 GeV

72

Gluons 8 massless bosons spin = 1 g=2 16

Leptons e−, e+ 511 keV spin = 1/2 g = 2*2 = 4

µ−, µ+ 105 MeV

τ−, τ+ 1.777 GeV

12

νe, ν̄e < 2 eV spin = 1/2 g = 2†

νµ, ν̄µ < 190 keV

ντ , ν̄τ < 18.2 MeV

6

Electroweak W+,W− 80.4 GeV spin = 1 g = 3

gauge bosons Z0 91.2 GeV

γ 0 g=2

11

Higgs boson H0 125 GeV spin = 0 g=1 1

gF = 72 + 12 + 6 = 90

gB = 16 + 11 + 1 = 28

Table 1: Degrees of freedom of all standard model particles.
† Experimental results show that within the margin of error, all produced and observed

neutrinos have left-handed helicities (spins antiparallel to momenta), and all antineutrinos

have right-handed helicities. In the massless limit, that means that only one of two possible

chiralities is observed for either particle. This is why for each species there are only 2 degrees

of freedom, rather than 4 as in the more massive leptons.

At temperatures T ∼ 200 GeV, all particles are present, relativistic, and in thermal
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equilibrium, so we find

g(T ) = 28 +
7

8
× 90 = 106.75 (A1)

When the temperature drops to T ∼ 1 GeV, the temperature has dropped below the rest

energy of the t, b, c, τ,W+,W−, Z0 and H0 particles, therefore these are no longer relativistic

(and will have annihilated) and we have to take them out of the equation. We are left with

g(T ) = 18 +
7

8
× 50 = 61.75 (A2)

total degrees of freedom. When the temperature drops below 100 MeV, the remaining quarks

and gluons are locked up in non-relativistic hadrons, and the muons have annihilated. All

that’s left are photons, electrons, positrons, neutrinos and anti-neutrinos, so that

g(T ) = 2 +
7

8
∗ 10 = 10.75. (A3)

So far, all relativistic particles were in thermal equilibrium. However, as the temperature

drops to 1 MeV, the neutrinos decouple and move freely, which means their temperature will

start to diverge from the photon temperature. At T < 500 keV, the electrons and positrons

are no longer relativistic, so only the photons and neutrinos remain, and

g(T ) = 2 +
7

8
× 6

(

Tν

T

)

, (A4)

where Tν is the neutrino temperature.

Let us now calculate the neutrino temperature. The Second Law of Thermodynamics

implies that the entropy density s(T ) is given by

s(T ) =
ρ(T ) + p(T )

T
(A5)

where ρ is the energy density and p is the pressure. Using the Fermi-Dirac and Bose-Einstein

distributions, we showed (see Equation 54) that for relativistic particles

ρ =

{

gB(π
2/30)aBT

4 (Bosons)
7
8
gF (π

2/30)aBT
4 (Fermions)

and p = ρ/3, and so s(T ) = 4ρ(T )/3T .

Let us now consider the entropy density of the photons and the electrons and positrons

at high temperatures, when they are still relativistic:

s(Thigh) =
4

3
aBT

3
high

(

2 +
7

8
∗ 4

)

=
4

3
aBT

3
high

(

11

4

)

(A6)
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where 2 degrees of freedom are from the photons (Bosons), and 4 are from the Fermions -

electrons and positrons (2 each, for the spin).

At low temperatures, the electrons and positrons become non-relativistic, most annihi-

late and the remaining particles have negligible contribution to the entropy, therefore

s(Tlow) =
4

3
aBT

3
low (A7)

Thermal equilibrium implies that the entropy in a comoving volume remains constant:

s(T )a3 = const

After decoupling, the temperature of the neutrinos drops as Tν ∝ a−1. Combining these

results, we find
(

Tlow

Tν,low

)3

=
11

4

(

Thigh

Tν,high

)3

(A8)

At high temperatures, the neutrinos are still in thermal equilibrium with the photons,

i.e. Tν,high = Thigh. Thus, after neutrino decoupling we finally obtain

Tν =

(

4

11

)1/3

T (A9)

at low temperatures. Therefore,

g(T ) = 2 +
7

8
∗ 6 ∗

(

4

11

)1/3

= 3.36. (A10)
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