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This part of the course is based on Refs. [1] - [3].

1. A brief overview on basic cosmology

As this part was covered by Bryan, I will only go briefly over the key results. It is the

student’s responsibility to ensure that all that is written here is clear to you. The material in

this section is based on the “Cosmology” part in the GR course (PY4112), which is needed

to get full understanding of the FRW universe. As it is not defined as a pre-requisite, if you

didn’t learn GR, simply accept FRW equations as given.

The basic principle which is in the heart of the theory of general relativity (GR) is

Einstein’s radical idea that space itself is not fixed but flexible. Note this is conceptually

different than anything else we are used to. We are used to think as space as “fixed”, like a

blackboard on top of which objects such as particles move as they interact with each other.

As opposed to that, Einstein showed that the space is flexible, and can shrink or expand

- very much like a rubber band. The “thing” that shrinks space (space-time) is energy, or

mass (since E = mc2). Mathematically, the relation between the curvature of space-time

and the energy content is described by Einstein’s equation,

Gµν = 8πGTµν − Λgµν . (1)

Here, Gµν is Einstein’s tensor, Tµν is the stress-energy tensor, G is Newton’s gravitational

constant, Λ is a constant (known as the cosmological constant), and gµν is the metric tensor

(if you took GR, the meaning of all these should be perfectly clear to you, and if not, it is

OK- I will not continue in this direction).

It can be shown that a solution of Einstein’s equation for a universe that is homogeneous

and isotropic namely its spatial term is maximally symmetric is given by the Robertson-

Walker metric,

ds2 = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

]

. (2)
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The curvature constant k can get three values, k = −1, 0,+1 describing an open, flat and

closed universes, respectively. The term “metric” is central to GR, as well as to branch of

mathematics known as differential geometry. Very loosely, it describes the distance between

two points. Note that for flat space, the metric takes the form

ds2 = −dt2 + a2(t)
[

dr2 + r2(dθ2 + sin2 θ dφ2)
]

= −dt2 + a2(t)
[

dx2 + dy2 + dz2
]

, (3)

which is indeed Euclidean (flat); but the spatial distance between any two object changes

with time, even if the objects are fixed in space.

The evolution of the scale factor a(t) is obtained by using this metric in Einstein’s

equation. The results are two equations,

ä

a
= −4πG

3
(ρ+ 3p) , (4)

and
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (5)

which are known together as Friedmann Equations. Here, ρ is the energy density and p is

the pressure of the content of the universe (matter [particles and dark matter] and radiation).

These equations describe the evolution of the scale factor, hence of the universe as a whole.

1.1. Hubble’s law and the big bang

As was proven by the astronomer Edwin Hubble in 1929, all galaxies recede away

from us, at velocities that are proportional to the distance from us.

Mathematically, one can define Hubble’s constant, H0 and the deceleration pa-

rameter q0 as

H0 ≡
(

ȧ

a

)

t=t0

; q0 ≡ −
(

aä

ȧ2

)

t=t0

. (6)

where t0 is today. (note that Hubble’s constant is only constant today - it changes with

time, since the scale factor a(t) change in time ! and the same is true for the deceleration

parameter). The latest measured value I found in Wikipedia is H0 = 71.9+2.4
−3.0 (km/s)/Mpc

measured in Nov. 2016, where Mpc stand for Mega-parsec (and 1 pc ≈ 3× 1018 cm).

It is often convenient to write Hubbles constant as

H0 = 100h km s−1 Mpc−1, (7)

making h ≈ 0.7 a dimensionless constant.
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Hubble’s law can be written as

dL = H−1
0

[

z +
1

2
(1− q0)z

2 + . . .

]

. (8)

Here, dL is the luminosity distance, which is defined by

d2L =
L

4πF
, (9)

where L is the absolute luminosity of a given source and F is the flux measured by the

observer (the energy per unit time per unit area of some detector); note that as the universe

expands, one need to be very precise about what method is used to measure a distance to

an object.

The redshift, z is another measurable quantity, which is defined by

z = λ0−λ1

λ1

= a0
a1

− 1 .
(10)

The subscript X0 represent “today” (t0), and X1 represents a quantity measured at some

earlier time t1 < t0. Thus, a0 is the value of the scale factor today, while a1 ≡ a(t = t1).

Similarly, λ0 is the wavelength of a photon today, while λ1 is the wavelength of the same

photon at earlier time (the wavelength of a photon changed since the universe expands).

This is a quantity that is relatively easy to measure, by looking at known emission and

absorption lines of different elements that are common to all galaxies.

Hubble’s discovery, that H0 > 0 (which is immediate from Hubble’s law taken to first

order, z = dLH0) implies that ȧ > 0. Using Friedmann equations given above, it is easy to

show that for universes filled with fluids of positive energy (ρ > 0), nonnegative pressure

(p ≥ 0) and no cosmological constant (Λ = 0), one finds ä < 0.

We can therefore trace the evolution of the universe backward in time, and we necessarily

reach a singularity, namely a = 0. Notice that if ä were exactly zero, a(t) would be a straight

line, and the age of the universe would be H−1
0 . Since ä is actually negative, the universe

must be somewhat younger than that. This is demonstrated in Figure 1.

This singularity at a = 0 is the Big Bang. It represents the creation of the universe

from a singular state, not explosion of matter into a pre-existing spacetime. Note that the

universe can still be spatially infinite and flat (Equation 3); simply, all coordinated would

shrink into zero. An interesting analogy is with a copying machine, copying an infinitely large

sheet of paper while using the zoom out option. Every copy, the information gets denser and

denser, but if we began with an infinitely big paper, it is still infinitely big. Asymptotically,

the density gets to infinity, and the laws of physics break.
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Fig. 1.— In a universe with no cosmological constant, we know that it is expanding (ȧ > 0)

and decelerating (ä < 0). Thus, there must have been a point in the past when a = 0. This

is the Big Bang.

1.2. Evolution of the scale factor a(t); brief history of the universe.

Friedmann’s Equation (Equations 4 and 5) can be solved to obtain the evolution of a(t)

in the various scenarios. Since the universe is composed of matter, radiation and vacuum

energy, the evolution depends on answering two questions: (i) whether the universe is flat,

open or closed (k = 0,−1,+1); and (ii) what is the dominant energy content of the universe.

In the Cosmology part in GR, we showed that for all three ingredients (matter, radiation

and vacuum energy), we can write an equation of state in the form p = ωρ, from which the

conservation of energy becomes

p = ωρ ⇒ ρ ∝ a−3(1+ω) ⇒







ρm ∝ a−3 [ω = 0]

ρr ∝ a−4 [ω = 1/3]

ρΛ ∝ a0 [ω = −1]

(11)

Where ρr is the energy density in both radiation and relativistic matter, ρm is the energy

density in non-relativistic matter and ρΛ is the vacuum energy density. Thus,

ρm(t) = ρm(t0)
(a0
a

)3

= ρcΩm(1 + z)3 (12)

where Ωm ≡ ρm,0/ρc; ρc = ρcrit,0 = 3H2
0/8πG(= 8.62× 10−30 g cm−3) is the critical density;

and the subscript 0 represents present time values.
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Similarly,

ρr(t) = ρr(t0)
(a0
a

)4

= ρcΩr(1 + z)4, (13)

and

ρΛ(t) = ρΛ(t0). (14)

Observations suggest that at present epoch

Ωtotal ≡ Ω ≃ 1; Ωm ∼ 0.3; Ωr ≃ 8.2× 10−5 (15)

Thus, at present, matter dominates over radiation (and vacuum over both). But when

looking into equations 12, 13 and 14, clearly when looking at the past (z increases), radiation

energy density grows faster than matter (and vacuum) energy densities as we go to earlier

phases of the universe. At some time, t = teq in the past (corresponding to a value a = aeq
and redshift z = zeq) the radiation and matter have had equal energy densities. From

Equations 12, 13 and 15 we get

(1 + zeq) =
a0
aeq

=
Ωm

Ωr

≃ 3.6× 103 (16)

Since the temperature of the radiation grows as a−1 (recall Stefan-Boltzmann’s law, T 4 ∝
ρr ∝ (1 + z)4), the temperature of the universe at this epoch was

Teq = T0(1 + zeq) = 2.7× 3.6× 103 ≃ 1.0× 104
◦
K = 0.9 eV (17)

where T0 = 2.7◦ K is the (current) temperature of the cosmic microwave background (CMB)

radiation.

We can now solve Friedmann Equation (Equation 4) for various geometries and contents

of the universe. Let us focus on the flat universe (k = 0). For matter dominated universe,

we find

a(t) =

(

9

4

8πG

3
Ωmρca

3
0

)1/3

t2/3, (18)

while for radiation-dominated flat universe

a(t) =

(

4× 8πG

3
Ωrρca

4
0

)1/4

t1/2. (19)

Clearly, at very early times, t ≪ teq, the energy density of the universe is dominated by

radiation, while at later times, t ≫ teq it is dominated by matter. Given that we can

consider present day epoch as being matter-dominated, the Equilibrium time, teq is easily

obtained using Equations 16 and 18.
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As the universe expanded, it cooled. At time of about 1012 s (T ∼ 1 eV), the energy

density in matter becomes equal to that in radiation, and the universe becomes matter

dominated. This further marks the beginning of structure formations. Finally, at time

of ∼ 1013 s, (T ∼ 0.1 eV), ions and electrons combine to form atoms: this is known as

recombination. When it happens, matter and radiation decouple, ending the long epoch

of thermal equilibrium that existed in the early universe. The surface of last scattering

for the microwave background radiation (CMB) is the universe itself at decoupling, which

occurred at zdec ≈ 1180 (Tdec ∼ 3220◦ K, or 0.28 eV), which occurred when the universe was

378,000 years old.

2. Inhomogeneous universe: linear perturbation theory

The discussion on cosmology so far assumed that the universe is homogeneous. However,

clearly the universe we see today is not homogeneous, but rather contain structures on many

different scales: from the solar system (scale of, say, 1 A.U.= 1.5×1013 cm), galaxies (typical

scale of 10 kpc, where 1kpc = 3.15 × 1018 cm), galaxy clusters (typical scale of ∼ 1 Mpc,

and super-clusters (∼ 30 Mpc).

Inhomogeneities on small scales, ≪ 10 Mpc are highly non-linear. This means that the

fractional density fluctuations on this scale, δ ≡ δρ/ρ, where ρ is the average density, are

large: δ ≫ 1. On scale of ∼ 10 Mpc, δ ≈ 1, while on much larger scales, δ ≪ 1.

As opposed to that, when looking at the cosmic microwave background (CMB), the

radiation is highly isotropic. Variations in the CMB does not exceed ≈ 10−5. The CMB

radiation decoupled from matter at zdec = 1180, and therefore the CMB anisotropy reflects

the level of anisotropy at that early epoch. The smallness of the CMB fluctuations imply

that the universe has been nearly homogeneous at z = zdec. We therefore believe that the

structures we see today are the results of evolution of these small perturbations, which were

generated at an early epoch of the universe evolution.

Furthermore, these observations suggest that during most of cosmological time, the

evolution of perturbaton was linear. Only relatively recently the evolution of perturba-

tions became non-linear on scales smaller than ∼ 10 Mpc. This is in agreement with the

cosmological principle.

As in standard cosmology we treat both radiation as well as matter (regular and dark

matter) as ideal fluid, the description of perturbations is similar to the description of

perturbation in fluids. In particular, we are interested in studying under what conditions

perturbations grow, and when they are suppressed.
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Basically, one can distinguish between two types of perturbations. The first is isen-

tropic perturbations, which are pure density perturbations. While the density of the fluid

is perturbed, its entropy is conseved; hence it is appropriate to call these adiabatic pertur-

bations. The second type of perturbations involve perturbation of the entropy of the fluid.

Such perturbations do not represent perturbation of the metric, but rather of the equation of

state (ratio of baryons per photons). These are also known as isocurvature perturbations

(sometimes these are also called isothermal perturbations, as at t ≪ teq. in such pertur-

bations, the temperaute is approximately conserved. In general, any perturbation can be

written as a linear combination of both isentropic and isocurvature perturbations.

Perturbations grow due to the effect of gravity. Gravity slows the expansion of the

universe. As a result, a slightly over-dense region will suffer slower than average deceleration,

leading to slower than average expansion. This will lead to an increase of the over-density

with time (positive feedback). However, as we will discuss below, there are several effects

that will reduce this positive feedback.

Here we will discuss the evolution of the perturbation in the linear regime. Since the

initial perturbations were small, δ ≪ 1, much of their evolution may be described by a linear

perturbation theory. For large scale perturbation, & 10 Mpc, this is true all the way until

present epoch, while at smaller scale at a certain point the perturbation become non-linear.

3. Hubble radius

As the universe expands, quantities such as density, etc, evolve. A characteristic time

scale for this evolution is (ȧ/a)−1 = H(t)−1. This naturally introduces a characteristic length,

known as the Hubble radius,

λH ≡ c

H
= c

a

ȧ
(20)

Since no signal travels faster than the speed of light, the Hubble’s radius has an important

physical significance. It represents the largest length scale that is causally con-

nected, i.e., across which information can be communicated, during the time over which

significant expansion (or perturbation growth) takes place.

When dealing with causally-connected regions, due to the expansion of the universe we

have to be careful. We normally talk about the proper distance, Lprop, which is the distance

between two points at some time t in the past. However, we like to work in “comoving units”:

due to the expansion of the universe, the distance increases linearly with a. Thus, two points

separated by a proper length Lprop at some time t are separated at present time (t = t0) by

Lprop × a0/a(t) = Lprop/a(t). Here and below, we take a(t = t0) = 1.
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This means that a perturbation on scale λprop at time t corresponds at present (t = t0)

to a perturbation on scale λco. = λprop/a(t). In what follows, I may simply drop the subscript

“co.”, and express all length scales in comoving units.

As we saw above (Equations 18, 19), the scale factor a(t) ∝ tn, where the power law index

n depends on whether the universe is matter dominated (n = 2/3) or radiation dominated

(n = 1/2). At time t = teq. in the past, the matter and energy densities were equal; the scale

factor at that time is a = aeq.. Its value was calculated in equation 16, and can be written

as a−1
eq. = 2.4× 104Ωmh

2.

During the matter dominated era, aeq. < a < 1, the scale factor evolves according

to Equation 18, ȧ2 = ΩmH
2
0a

3
0a(t)

−1. Earlier, during radiation dominated era, a < aeq.
Equation 19 gives ȧ2 = ΩrH

2
0a

4
0a(t)

−2. Thus, at equilibrium, the (comoving) Hubble radius

is

λeq. =
c

ȧeq.
≃ 130 (Ωm,0.3h

2
70)

−1 Mpc. (21)

Before and after equilibrium, Hubble radius is

λH ≡ c

ȧ
= λeq. ×

{

(a/aeq.)
1 a ≪ aeq.;

(a/aeq.)
1/2 a ≫ aeq..

(22)

The baryon mass enclosed in a sphere of radius λ is

Mλ =
4π

3
λ3Ωbρc = 7.5× 109Ωb,−2h

2
70λ

3
Mpc M⊙. (23)

Here, we took Ωb = 10−2Ωb,−2 is the baryon energy density today (measured in units of

ρc), and M⊙ is the solar mass. Note that here and below, we use a different notation to

the baryon energy density Ωb and matter energy density, Ωm to to allow for the presence

of non-baryon matter (dark matter). We will further elaborate on that below. Since this

is about the mass in a galaxy (∼ 1010M⊙), we can deduce that a galaxy was formed out of

fluctuations on scale of ∼ 1 Mpc.

4. The Jeans scale: baryonic matter

The physical situation is as follows. At scales λ < λH , gravity acts to increase the

density fluctuations. However, at the same time, plasma pressure acts to suppress them.

When a region gets denser, its expansion slows down, and therefore the rate of pressure

decrease in this region also slows down relative to its environment. As a result, this region

becomes over-pressured, and this over-pressure will act to accelerate the over dense region’s

expansion.
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Fig. 2.— Above the Hubble radius, regions cannot be causally connected.

We want now to estimate the scale at which these pressure effects are important. For

that, we recall that we treat the universe as an ideal fluid. In such a fluid, pressure per-

turbations propagate at the speed of sound, cs. Before recombination, we have a coupled

baryon-photon fluid, and the speed of sound can be written as

cs =
c√
3

[

3

4

ρb(t)

ρr(t)
+ 1

]−1/2

. (24)

Since ρb ∝ a−3 and ρr ∝ a−4, we need to discriminate between two epochs.

• At t < teq., ρb(t) < ρr(t) and cs = c/
√
3 ∝ a0.

• At t > teq., ρb(t)/ρr(t) ∝ a and ρb(t)/ρr(t) > 1, and so cs ∝ a−1/2.

We thus find that over-pressure will prevent the growth of perturbations on a scale for

which the sound crossing time, λprop./cs is shorter than the time scale for the growth of the

perturbation, which is a/ȧ. In other words, λprop < csa/ȧ, correspsonding to comoving scale

λco. < cs/ȧ. This enables to define the Jeans scale,

λJ ≡ cs
ȧ

=
cs
c
λH . (25)

Note that some textbooks use somewhat different definition of the Jeans scale, as

λJ =
√
π

cs√
Gρ

(26)



– 10 –

This follows from comparing the free fall time due to gravity, tff ∼ (Gρ)−1/2 (which you

can derive from Kepler’s laws !), with the time it takes the pressure to re-adjust the density,

which is λJ/cs. The two definitions are similar, up to a factor of order unity.

For λ > λJ , pressure effects may be neglected, and perturbations will grow; on the other

hand, for λ < λJ , pressure prevents the growth of over perturbations, and rather leads to

density oscillations (acoustic waves). This oscillatory behavior can be understood in terms

of energy conservation. When the plasma in some region of the universe is compressed, its

internal energy is increased. When it expands, the excess of internal energy is converted

to excess kinetic energy, leading to faster than average expansion. This, in turn, leads

to compression of the surrounding plasma, converting the excess kinetic energy to excess

internal energy of the surrounding plasma. The process then repeats itself.

The evolution of the Jeans scale is readily obtained:

• For a < aeq., the plasma is radiation dominated, and cs = c/
√
3. Thus, λJ = λH/

√
3.

• At a > aeq., we had cs ∝ a−1/2. Since in this regime λH ∝ a1/2, we have λJ ∝ a0.

Using the Jeans length, we can define the Jeans mass as

MJ ≡ 4π

3
ρ

(

λJ

2

)3

. (27)

This is the mass enclosed in a sphere of radius λJ/2. At a = aeq. we therefore find that

MJ =
4π

3
ρb

(

λJ

2

)3

≃ 2× 1016(Ωb,0h
2
70)

−2M⊙ (28)

This is the approximate mass of a supercluster of galaxies. Thus, perturbations on

scales smaller than that of a supercluster cannot grow before recombination.

• On the other hand, at recombination baryons decouple the photons. As a result, the

baryons no longer feel the photon pressure, and the pressure term is dominated by the

thermal motion of the baryons themself. At this stage, the baryons are non-relativistic.

Therefore,

c2s =

(

∂p

∂ρ

)

S

=

(

5

3

)

kBT

mp

(29)

Here, T is the baryon temperature. We thus find that cs ∝ T 1/2. Furthermore, note

the very sharp drop in the value of cs that follows the decoupling. As photons and

particles are decoupled, the radiative pressure does not play any further role, and is

replaced by baryon pressure, which is pb ≪ pr due to the fact that the number of

photons outnumber that of the baryons by nr : nb ∼ 108 : 1.
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Following decoupling, T = 0.35(a/adec.)
−2 eV. The value of T is derived from Equation

16 by recalling that zdec. ≈ 1100. The scaling of T with the scale factor a can easily

be understood by noting that for non-relativistic particles, their velocity decays as

v ∝ a−1 due to the expansion, and T ∝ 〈E〉 ∝ v2, where 〈E〉 is the average energy.

We therefore find that
cs
c
= 2.5× 10−5(a/adec.)

−1, (30)

and

λJ = 2× 10−5λeq.(a/adec.)
−1/2. (31)

Thus, immediately after recombination, MJ = 1.5× 105(Ωb,0h
2)−1/2M⊙. This is about

the scale of a globular cluster. Comparing to equation 28, we see a decrease by 11

orders of magnitude at recombination !. The decoupling of the photons cause huge

drop in Jeans mass.

Fig. 3.— Scales for growth of baryonic perturbations

5. Silk damping

Before decoupling, photons and baryons are strongly coupled. However, the coupling

is imperfect; photons have mean free path 〈l〉 = (σTne)
−1 with is greater than 0. Here,

σT ≈ 6.65 × 10−25 cm2 is Thomson cross section. In other words, photons diffuse from

over-dense region. This diffusion cause damping of perturbation in the photon distribution,

hence damping of the acoustic oscillations. This is known as Silk damping, after Joe Silk.
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The Silk damping scale, λd is the typical distance photons can diffuse during Hubble

time. It can be calculate it as follows. During time t, a photon takes on the average

N = ct/〈l〉 steps. From kinetic theory, we have

λd =

√

N

3
〈l〉 =

√

ct

3〈l〉〈l〉 =
(

ct

3σTne

)1/2

. (32)

The available time for photons diffusion is t = a/ȧ. Thus, the comoving scale for Silk

damping (the scale below which perturbations will be suppressed) is

λ < λ′

D(a) =
1

a

(

ca

3ȧσTne

)1/2

=

(

c

3aȧσTne

)1/2

. (33)

The evolution of the number density is given by ne = Ωb(ρc/mp)a
−3. In the radiation

dominated era, a ≪ aeq., we have ȧ2 = ΩrH
2
0a

4
0a(t)

−2 = ΩmH
2
0a

3
0aeq./a(t)

2, where use was

made in Equation 16. In the radiation dominated era, we thus find that the diffusion scale

grows with time,

λ′

D(a) ≈
(

mpc

3σTΩbρcΩ
1/2
m a

1/2
eq. H0a

3/2
0

)1/2

a3/2. (34)

At equilibration time, it is equal to

λD,eq. = λ′

D(a = aeq.) ≈ 4(Ωm,0.3/Ωb,0.02)
1/2(Ωm,0.3h

2
70)

−2 Mpc. (35)

At later times, t > teq., ȧ
2 ∝ a−1. As a result, λ′

D(a) ∝ a5/4. Thus, at recombination,

λ′

D(adec) ≈ 17 Mpc. The mass enclosed is

MD =
4π

3
ρ

(

λ′

D

2

)3

∼ 1013
(

Ωm

Ωb

)3/2
(

Ωmh
2
)−5/4

M⊙ (36)

Silk damping prevents the survival of any baryonic perturbations occuring on scales

smaller than λD. It is clearly observed when looking at fluctuations of the CMB.

We thus find that if matter is purely baryonic and perturbations are isentropic (adi-

abatic), structure formation proceeds top-down, by fragmentation of perturbations larger

than Silk damping scale at recombination, Md ∼ 1013M⊙.

In an alternative model (by Peebles), perturbations are isothermal. In this model, the

sound speed is much lower, and as a result so is the Jeans mass. In this model, there are

no radiation perturbations, there is no Silk damping, and all perturbations with M > MJ ∼
106M⊙ survive. In this model, thus, structure formation is Hierarchical (bottom-up).

Both models, though, are inconsistent with the observed fluctuations in the CMB...
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Fig. 4.— Silk (diffusion) damping erases perturbations on scales λ < λD.

6. Evolution of the perturbation

6.1. Large scales: λ ≫ λH

Note: I give a somewhat “sketchy” derivation, as I don’t want to get into too many

technicalities here.

Using the definition of the Hubble’s constant (eq. 6), and Ω = ρ/ρc, we can write

Friedmann Equation (4) as

H2(Ω− 1) =
k

a2
(37)

Let us consider a spherical region, of radius λ > λH , containing a matter at density

ρ1 = ρ0+ δρ, which is embedded in k = 0 universe of density ρ0. Due to spherical symmetry

(more accurately: Birkhoff’s theorem), the inner region is not affected by the matter outside.

As a result, the inner region, being over-denee (δρ > 0) evolves like a k = +1 universe. We

can therefore write, for the two regions:

H2
1 +

1

a21
=

8πG

3
ρ1 ; H2

0 =
8πG

3
ρ0, (38)

where H1 = (ȧ1/a1) and H0 = (ȧ0/a0). We compare the perturbed universe with the

background universe when their expansion rates are equal; i.e., at time t when H1 = H0. At

that time, we get
8πG

3
(ρ1 − ρ0) =

1

a21
, (39)

or
ρ1 = ρ0

ρ0
=

δρ

ρ0
=

3

8πG(ρ0a21)
. (40)
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For small δρ/ρ0, although in general a1 6= a0 they are close, and we can write a1 ≈ a0.

Since in radiation dominated era (t < teq.) we have ρ0 ∝ a−4 while in matter dominated era

(t > teq.), ρ0 ∝ a−3, we get
(

δρ

ρ

)

∝
{

a2 (t < teq.)

a (t > teq.)
(41)

We thus find that the amplitude of modes with λ > λH always grows.

6.2. Inside the Hubble radius

Let us consider what happens to the modes inside the Hubble radius. As we already

argued, if the mode enters the Jeans radius, it will stop growing, and instead oscillates.

Inside λD it will inevitably decay. However, if the mode has length λ > λJ , the arguments

used in deriving equation 41 still hold; as a result, the mode will continue to grow with

amplitude δρ/ρ ∝ a.

This hand waving argument is only correct for a flat universe with no dark matter,

namely Ωm,0 = 1, ΩΛ,0 = 0. This is known as “Einstein-de Sitter (EdS) universe. As we

know today, the universe is more complicated than this, as ΩΛ ≃ 0.7 and Ωm ≃ 0.3. For such

a universe the growth rate is a more complicated function of time. A good approximation is

derived in MVW (section 4.1.6),

δ ∝ D(z) ∝ g(z)

1 + z
(42)

where

g(z) ≃ 5

2
Ωm(z)

{

Ω4/7
m (z)− ΩΛ(z) +

[

1 +
Ωm(z)

2

] [

1 +
ΩΛ(z)

70

]}−1

. (43)

The important point is that due to the expansion of the universe, this growth rate is some

power law in time, rather than exponential.

Calculation of the growth rate provides an independent method to study the content of

the universe. The amplitude of perturbations today is inferred from galaxy surveys, while

the amplitude of perturbations at decoupling is inferred from studying the anisotropy in the

CMB radiation. Thus, by knowing the factor by which the perturbation amplitude has grown

from decoupling till today, δ(t0)/δ1(tdec.) one can constrain the cosmological parameters. For

EdS universe, we already derived δ(t0)/δ1(tdec.) = 1/adec..
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7. Dark matter

By definition, “dark matter” is matter that we cannot observe through electromagnetic

interaction (emission and absorption of photons). The existence of which is therefore inferred

from gravitational effects only. Based on observations of large scale objects (clusters of

galaxies), it is inferred that the density of dark matter in the universe exceeds that of

normal (luminous) matter, by a factor of 6:1 or so.

Dark matter is not necessarily non-baryonic. It may be ordinary, baryonic matter, which

is in the form that is difficult to detect electromagnetically, such as rarefied hot gas with

little emission and absorption, low mass stars which can be very dim, etc. Here, though, we

treat it as non-baryonic, and consider its effect on the evolution of the perturbations.

Because dark matter has little interaction with photons, it decouples the rest of the

plasma (matter and radiation) at some time tdec.,DM before tdec.. We distinguish between two

possibilities. The first is that during its decoupling from the rest of matter and radiation,

the dark matter particles are relativistic. This is called hot dark matter. In the second

option, the dark matter particles are already non-relativistic at decoupling. This is cold

dark matter.

7.1. Evolution of perturbation

During radiation dominated era, the evolution of perturbations is governed by radiation,

and there is no difference between the regular and dark matter. At a > aeq. the evolution of

perturbations is governed by matter. Our previous discussion on the evolution of perturba-

tions on scale λ > λJ ≃ λeq. holds for both ordinary and dark matter. As this evolution is

governed by gravity only, it is the same for both regular and dark matter.

However, there is a difference between the evolution of perturbations at a > aeq. on

smaller scales, λ < λJ ≃ λeq.. Recall that at a < adec., the Jeans scale is determined by

radiation pressure. This pressure is what prevents perturbations in the baryonic matter

component from growing on small scales, λ < λJ ≃ λeq.. On this scale, the baryon density

perturbations oscillate during aeq. < a < adec..

However, dark matter particles are not coupled to the radiation, and therefore they

do not “feel” the radiation pressure. If the density of dark matter is much greater than

that of baryons, Ωm ≫ Ωb, the baryonic density oscillations have only little effect on the

distribution of dark matter. In this case, perturbations in the dark matter component on all

scales, including λ < λeq. will continue to grow during aeq. < a < adec., as δ ∝ a.
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This grow of dark matter perturbation during aeq. < a < adec. affects baryon perturba-

tions as well. After decoupling, the baryon Jeans scale drops by many orders of magnitude,

as radiation pressure no longer supports the baryons. They therefore fall into the gravita-

tional potential wells created by the dark matter. Thus, in the presence of dark matter,

baryon perturbations on scale λ . λeq. are amplified by a factor adec./aeq. = 20Ωmh
2
75 beyond

their amplification in the absence of dark matter.

Although dark matter particles do not “feel” the radiation pressure, dark matter per-

turbations on small scales are suppressed due to a different reason. This suppression will

obviously only be important for λ ≪ λH , namely at a > aeq.. In this regime, we can derive

the the gravitational evolution of the dark matter perturbations as follows. (We ignore the

expansion of a homogeneous universe, which will not change our conclusion).

Since dark matter is collisionless, we cannot use a fluid description in determines its

evolution. Instead, we use the collisionless Boltzmann equation. Let f(~x,~v, t) be the

distribution function of dark matter particles. This means that f(~x,~v, t)d3xd3v is the number

density of particles in an (infinitesimal) phase-space element d3xd3v around {~x,~v}.

For a collisionless system, we have

df

dt
= 0. (44)

This is the collisionless Boltzmann equation, which expresses that in a collisionless

system, the phase-space density around each particle is conserved. In other words, there is

no diffusion or scattering.

We can now write

df =
∂f

∂t
dt+

∂f

∂xi

dxi +
∂f

∂vi
dvi (45)

(using Einsteain’s summation convenstion, namely that there are sums over dxi and dvi),

and use
dvi
dt

= − ∂Φ

∂xi

(46)

where Φ is the gravitational potential, to write

∂f

∂t
+ vi

∂f

∂xi

− ∂Φ

∂xi

∂f

∂vi
= 0 (47)

This equation is also known as Vlasov equation, and it has many applications in physics.

The unperturbed distribution is homogeneous in space, namely, independent on ~x.

While we cannot determine the gravitational potential Φ, we can use Birkhoff’s theorm

in GR, and take Φ = 0 for this unperturbed solution.
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We denote the steady, homogeneous distribution by f0(v). We further assumed that

the unperturbed velocity distribution is isotropic (independent on the direction), and so f0
depends only on |~v|, as there is no preferred direction.

Let us now add a small perturbation to the dark matter distribution, f = f0 + f1. The

evolution of the perturbation is described by

∂f1
∂t

+ vi
∂f1
∂xi

− ∂Φ

∂xi

∂f0
∂vi

= 0. (48)

Note that we neglected the term ∂Φ
∂xi

∂f1
∂vi

in Equation 48 as it is of second order.

The gravitational potential obeys Poisson equation,

∇2Φ = 4πGδρ , δρ ≡ m

∫

d3vf1(~x,~v, t). (49)

where we assumed that m is the mass of a dark matter particle.

Equation 48 is linear. We can therefore look for solutions of the form f1 ∝ ei(
~k·~x−ωt).

With this choice of f1 we have

∇Φ =

∫

d3x4πGδρ = 4πGm

∫

d3xd3vf1(~x,~v, t) = −i4πG
|~k|
k2

δρ (50)

Furthermore,
∂f0
∂vi

=
vi
|~v|

df0
d|~v| . (51)

Using these results and the sultion for f1 in Equation 48, we get

−iωf1 + i~v · ~kf1 + i
4πG

k2
~k · ~v 1

|~v|
df0
d|~v|δρ. (52)

Multiply by m and integrate over velocities, we find

[

1− 4πGm

k2

∫

d3v
~k · ~v

ω − ~k · ~v
1

|~v|
df0
d|~v|

]

δρ = 0. (53)

Clearly, non-trivial solutions (δρ 6= 0) are obtained for

1− 4πGm

k2

∫

d3v
~k · ~v

ω − ~k · ~v
1

|~v|
df0
d|~v| = 0 (54)

This is nothing but a dispersion equation, which determines a dispersion relation, ω = ω(~k)

for which this equality is satisfied.
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Let us find a solution to this equation in the long wavelength, ~k → 0 limit. We will

assume that in this limit, ω/|~k| → ∞, so that ~k ·~v/ω ≪ 1, and may therefore be consider as

a small parameter. This approximation holds as long as the wave numbers are |~k| ≪ ω/v0,

where v0 is the characteristic velocity of the dask matter particle distribution.

Keeping terms up to second order in ~k · ~v/ω, we may write equation 54 as

1− 4πGm

k2ω2

∫

d3vω2
~k · ~v
ω

(

1 +
~k · ~v
ω

)

1

|~v|
df0
d|~v| = 0 (55)

Now comes the trick. The term linear in ~k ·~v/ω vanishes upon integration, since we integrate

over all space, and the rest of the integrand is independent on the direction of ~v.

Using integration by parts, the integral of the (~k · ~v/ω)2 term, which is
∫

d3v(~k ·
~v)2|~v|−1(df0/d|~v|) gives −k2

∫

d3vf0 (note that d/d|~v|((~k · ~v)2/|~v|) = (~k · ~v)2/|~v|2). This

leads to the dispersion relation

ω2 = −4πGρ, (56)

where ρ = m
∫

d3vf0 is the number (rather then eenrgy) density.

The time scale for perturbation growth is therefore

t ∼ 2π

iω
=

√

π

Gρ
, (57)

which is independent on the perturbation scale.

This result has a straight-forward interpretation. Consider a sphere of radius R, massM

and mass density ρ. The acceleration at a point at the edge of the sphere is g = GM/R2, and

therefore the time scale for gravitational collapse of the sphere is ≈
√

2R/g =
√

2R3/GM =
√

3
2πGρ

. Thus, 1/
√
Gρ is the “free fall time”, which is the characteristic time scale for collapse

under gravitation in the abscence of processes that resist the collapse (such as pressure).

This result is similar to the results derived above, δ ∝ a in the matter dominated era.

The results we derived, ω2 = −4πGρ, holds for long wavelengths. Let us next esti-

mate the wavelength where this gravitational instability is suppressed. Such an estimate is

obtained by finding the wavelength kc for which ω = 0. Using Equation 54, we have

k2
c = −4πGm

∫

d3v
1

|~v|
df0
d|~v| = 4πGm

∫

d3v
1

|~v|2f0 = 4πGρv−2. (58)

Here, the overbar denotes average over the distribution function f0. The corresponding

wavelength is

λc ≡
2π

kc
=

√

π

Gρ
(v−2)−1/2. (59)
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This result is similar to that obtained for normal matter. Note, though, the following.

The Jeans scale is given by the product of the perturbation growth time and the speed of

sound of the fluid. Here, the scale below which perturbation growth is suppressed is given by

the perturbation growth time and the characteristic dispersion in the velocities of the dark

matter particles, defined as (v−2)−1/2.

7.2. Free streaming

While the effect of pressure leads to oscillations, the velocity dispersion of

dark matter particles lead to suppression of perturbations. On scales λ < λc,

dark matter particles propagate a distance larger than λ on perturbation growth time scale.

During matter domination era, this “free streaming” of particles will “smear out” and erase

the perturbations, in a similar way to how photon diffusion suppresses perturbations on

scales λ < λd during radiation domination.

The free streaming scale is defined as the distance that dark matter particles propagate

on a gravitational perturbation growth time scale, λFS ≡ a−1(a/ȧ)v = v/ȧ. Here, v is

the characteristic velocity dispersion of dark matter particles. λFS evolves with time, as

λFS ∝ va in radiation dominated era, and λFS ∝ va1/2 in matter dominated era.

We now discriminate between two cases. At early epoch, a < aNR < aeq., dark matter

particles are relativistic, v ≈ c and λFS ∝ a. By assumption, dark matter particles become

non-raltivisitc at aNR < adec.. At a > aNR, when the dark matter particles are already

decoupled from the photons (namely, at a > adec.,DM), the redshift of dark matter particles

momentum implies v ∝ a−1 and λFS ∝ a0 (rad. dominated) and λFS ∝ a−1/2 (matter

dominated). If the dark matter particles are already non-relativistic, but are still coupled to

the photons (i.e., aNR < a < adec.,DM, then v ∝ a−1/2 and λFS ∝ a1/2. This can be seen as

v2 ∝ TDM ∼ Tr, and Tr ∝ ρ
1/4
r ∝ a−1.

This free streaming will erase perturbations on scale λ < λFS(a = aNR) = c/ȧ(a = aNR).

8. Summary: the resulting perturbed spectrum

We now have all the ingredients to look at the evolution of a perturbation from an initial

time ti ≪ teq. to some final time, t > tde..

• Perturbations on small scales: λ ≪ max(λD, λFS) are suppressed by the diffusion of
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Fig. 5.— In cold dark matter dominated universe, free streaming of dark matter particles

erase perturbation growth on scale λ < λFS.

photons and free streaming of dark matter particles. Thus,

δ(t) ≈ 0 λ < max (λFS, λD). (60)

• Perturbations on the large scale, at wavelength λ > λeq. grow as a2 during radiation

domination and as a1 during matter domination. As long as a < adec. ≪ 1, we can

approximate δ ∝ a for matter dominated phase.

Thus, these perturbations are amplified by a factor (aeq./ai)
2(adec./aeq.)) from their

origin at ai until adec.. For a > adec, we showd that these perturbations will grow as

δ ∝ D(a) ∝ aα, with α < 1 depends on the cosmology.

• Perturbation on intermediate scale: max (λFS, λD) < λ < λeq.. These perturbations

enter the horizon (i.e., their eavelength becomes equal to λH at a = aent. < aeq..

Once they enter the horizon, the perturbation does ntot grow during the radiation

dominated era, as the Jeans scale at this time is comparable to the horizon size. Thus,

by the time the scale factor is a = aeq., these perturbations are suppressed, compared

to perturbations on larger scale, λ > λeq. by a factor (aeq./aent.)
2.

During the time aeq. < a < adec., the evolution of these perturbations depends on

whether or not Ωm is dominated by dark matter.

1. If Ω is dominated by dark matter (as we believe today), then dark matter pertur-

bations grow linearly with a during aeq. < a < adec.. Thus, although the baryon

perturbations on scale λ < λeq. do not grow but rather oscillate, at decoupling
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they are no longer supported by photon pressure, and the baryons fall into the

dark matter gravitational potential well after decoupling. Thus, in the presence

of significant dark matter component these perturbations do grow linearly in this

epoch, and the overall suppression at a = adec. compared to perturbations on large

scale remains (aeq./aent.)
2.

2. In the absence of dark matter, baryon perturbations on scale λD < λ < λeq. do

not grow during aeq. < a < adec., but rather continue to oscillate. The overall

suppression of these perturbations at adec. relative to large scale perturbations is

(aeq./aent.)
2(adec./aeq.)

Since λH ∝ a for a < aeq., we can write aent. ∝ λ, or aent. = aeq.(λ/λeq.). This means

that in the presence of dark matter, perturbations on scale max (λFS, λD) < λ < λeq.

are suppressed, compared to perturbations on larger scales, by a factor (λ/λeq.)
−2.

In the absence of dark matter, perturbations on scale λD < λ < λeq. are suppressed by

a factor (λ/λeq.)
−2(adec./aeq.).

The signatures of the inhomogeneities in the Universe at the time of decoupling are

imprinted on the cosmic microwave background (CMB) radiation. Currently, I still do not

know if we have the time to discuss it. Basically, comparison of the CMB anisotropy with the

observed inhomogeneities in the present universe, i.e. with the large-scale structure (LSS)

of the distribution of galaxies, provides, when combined with the results we derived here on

the evolution of the spectrum and amplitude of the inhomogeneities, stringent constraints

on the cosmological model.
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