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1. Introduction

Mastering (hopefully) the treatments of vectors and tensors in curved space time, we

can now write covariant physical equations in such spaces. Recall our basic goal: we want

to know how do gravity curves space-time.

Before answering this question, we first have to clarify what do we exactly mean by

“curved space time”? How do we know that a space-time is “curved”?

What we look for is a mathematical description of “curvature” of space-time. Alterna-

tively, we would like to be able to tell, being inside space - time, that it is “curved”. (You

may think of earth as being “curved”, but this is because earth is embedded in 3-d universe;

namely, we can look at it from the “outside”, as astronauts do... and indeed, many years

ago, it was not at all obvious that earth is round !. But what about the entire universe ?

We can’t look at the universe from the outside, so is there alternative way? )

The purpose of this chapter is to show that there is a way (first found by Gauss) of

determining the curvature of space-time, using only intrinsic quantities.

2. Parallel transport

The first thing we need to discuss is parallel transport of vectors and tensors, which we

touched upon in the last part of the last chapter. Recall that in flat space it was unnecessary

to be very careful about the fact that vectors were elements of tangent spaces defined at

individual points; it is actually very natural to compare vectors at different points (where by

“compare” we mean add, subtract, take the dot product, etc.). The reason why it is natural
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is because it makes sense, in flat space, to “move a vector from one point to another while

keeping it constant” (see Figure 1). Then once we get the vector from one point to another

we can do the usual operations allowed in a vector space.

q

p

keep vector
constant

Fig. 1.— Parallel transport of a vector.

The concept of moving a vector along a path, keeping constant all the while, is known

as parallel transport. As we shall see, parallel transport is defined whenever we have a

connection; the intuitive manipulation of vectors in flat space makes implicit use of the

Christoffel connection on this space. The crucial difference between flat and curved spaces

is that, in a curved space, the result of parallel transporting a vector from one

point to another will depend on the path taken between the points. This is most

clearly demonstrated when parallel transporting a vector along a sphere, as is demonstrated

in Figure 2. Clearly, the vector, parallel transported along two paths, arrived at the same

destination with two different values (rotated by an angle θ).

It therefore appears as if there is no natural way to uniquely move a vector

from one tangent space to another; we can always parallel transport it, but the result

depends on the path, and there is no natural choice of which path to take. Unlike some of

the problems we have encountered, there is no solution to this one — we simply must

learn to live with the fact that two vectors can only be compared in a natural way if they

are elements of the same tangent space !.

As an example, two particles passing by each other have a well-defined relative velocity

(which cannot be greater than the speed of light). But two particles at different points on a

curved manifold do not have any well-defined notion of relative velocity — the concept simply
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Fig. 2.— A vector, parallel-transported along different path on the surface of a sphere arrive

to the same destination with two different values.

makes no sense. Of course, in certain special situations it is still useful to talk as if it did

make sense, but it is necessary to understand that occasional usefulness is not a substitute for

rigorous definition !. In cosmology, for example, the light from distant galaxies is redshifted

with respect to the frequencies we would observe from a nearby stationary source. Since

this phenomenon bears such a close resemblance to the conventional Doppler effect due to

relative motion, it is very tempting to say that the galaxies are “receding away from us” at

a speed defined by their redshift. At a rigorous level this is nonsense: the galaxies are not

receding, since the notion of their velocity with respect to us is not well-defined. What is

actually happening is that the metric of space-time between us and the galaxies has changed

(the universe has expanded) along the path of the photon from here to there, leading to

an increase in the wavelength of the light. As an example of how you can go wrong, naive

application of the Doppler formula to the redshift of galaxies implies that some of them

are receding faster than light, in apparent contradiction with relativity. The resolution of

this apparent paradox is simply that the very notion of their recession should not be taken

literally.

Lets get to the math now. Parallel transport is supposed to be the curved-space general-

ization of the concept of “keeping the vector constant” as we move it along a path; similarly
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for a tensor of arbitrary rank. Given a curve xµ(λ), the requirement of constancy of a tensor

T along this curve in flat space is simply dT
dλ

= dxµ

dλ
∂T
∂xµ = 0. We therefore define the covariant

derivative along the path to be given by an operator

D

Dλ
=

dxµ

dλ
∇µ . (1)

We then define parallel transport of the vector V along the path xµ(λ) to be the require-

ment that, along the path,

(

DV

Dλ

)µ

=
dxσ

dλ
∇σV

µ
≡

dxσ

dλ
V µ

;σ =
dV µ

dλ
+ Γµ

σρ

dxσ

dλ
V ρ = 0 . (2)

Similarly, the parallel transport of a tensor T along the path xµ(λ) is the requirement that

along the path,

(

D
Dλ

T
)µ1µ2···µk

ν1ν2···νl ≡
dxσ

dλ
∇σT

µ1µ2···µk
ν1ν2···νl = 0 . (3)

For example,
(

D

Dλ
T

)µ

ν =
dT µ

ν

dλ
+ Γµ

σρ

dxσ

dλ
T ρ

ν − Γρ
σν

dxσ

dλ
T µ

ρ (4)

Equations 2, 3 are known as the equation of parallel transport. We can look at

the parallel transport equation as a first-order differential equation defining an initial-value

problem: given a tensor at some point along the path, there will be a unique continuation

of the tensor to other points along the path such that the continuation solves Equation 3.

We say that such a tensor is parallel transported.

Not surprisingly, parallel transport equation is closely related to the geodesic equation.

As we have already discussed, we can define a geodesic as a path which parallel transports

its own tangent vector. The tangent vector to the path xµ(λ) is dxµ/dλ, and when putting

this vector in the parallel transport Equation (2), it becomes the geodesic equation.

3. Curvature

Finally, we are ready to discuss the curvature of space time. As we will shortly show, the

curvature is quantified by the Riemann tensor, which is derived from the affine connection.

The basic idea is that the entire information about the intrinsic curvature of a space is given

in the metric from which we derive the affine connection. We “see” the curvature by

parallel transporting a vector over an infinitesimal, closed loop, and comparing the initial

and final values of the vector.
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For example, in flat (Minkowski) space time, gµν = ηµν , all the derivatives of ηµν , and

all the components of the affine connection are 0, and when parallel transporting a vector in

a closed loop it is not changed- this is what let us determine that the metric is “flat”.

Let us now consider the more general curved space time. We have already argued, using

the two-sphere as an example, that parallel transport of a vector around a closed loop in

a curved space will lead to a transformation of the vector. The resulting transformation

depends on the total curvature enclosed by the loop; from this reason, we choose to work

with infinitesimally small loops. One conventional way to introduce the Riemann tensor,

therefore, is to consider parallel transport around an infinitesimal loop.

While we will take a different (quicker) path, it is easy to demonstrate the idea. Imagine

that we parallel transport a vector V σ around a closed loop defined by two vectors Aµ and

Bν :

(0, 0)

B

(  a, 0)

(  a,   b)

(0,   b)δ

ν

A
µ

Bν

δ

δ
A

µ

δ

Fig. 3.— Parallel transport of a vector around an infinitesimal closed loop.

The (infinitesimal) lengths of the sides of the loop are δa and δb, respectively. Now,

we use the fact that the action of parallel transport is independent of coordinates. Thus,

there should be some tensor which tells us how the vector changes when it comes back to its

starting point; it will be a linear transformation on a vector, and therefore involve one upper

and one lower index. In addition, it will also depend on the two vectors A and B which

define the loop; therefore there should be two additional lower indices to contract with Aµ

and Bν .

Furthermore, this tensor should be antisymmetric in these two indices, since inter-

changing the vectors corresponds to traversing the loop in the opposite direction, and should

give the inverse of the original answer. (This is consistent with the fact that the transforma-

tion should vanish if A and B are the same vector.) We therefore expect that the expression
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for the change δV ρ experienced by this vector when parallel transported around the loop

should be of the form

δV ρ = (δa)(δb)AµBνRρ
σµνV

σ , (5)

where Rρ
σµν is a (1, 3) tensor known as theRiemann tensor (or simply “curvature tensor”).

It is antisymmetric in the last two indices:

Rρ
σµν = −Rρ

σνµ . (6)

Generally, we can obtain the curvature tensor by performing parallel transport of the

vector V σ and look at the obtained result; we would get the curvature tensor as a function

of the connection coefficients. Instead, we choose a quicker path: we look at the commutator

of two covariant derivatives.

The relationship between the commutator of two covariant derivatives and parallel trans-

port around a loop should be evident; the covariant derivative of a vector in a certain di-

rection measures how much the vector changes relative to what it would have been if it

had been parallel transported (since the covariant derivative of a vector in a direction along

which it is parallel transported is zero; recall the discussion in the previous chapter, section

7 (Figure 4)). The commutator of two covariant derivatives, then, measures the difference

between parallel transporting the tensor first one way and then the other, versus the opposite

ordering.

ν

µ

∆
∆

∆

µ

∆

ν

Fig. 4.— Commutator of a covariant derivative.

The calculation is really straightforward. Consider a vector field V ρ. Then, (recalling
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that V ρ
;ν is a (1,1) tensor)

∇µ(∇νV
ρ) = (V ρ

;ν);µ
= ∇µ

(

∂V ρ

∂xν + Γρ
νσV

σ
)

= ∂
∂xµ

(

∂V ρ

∂xν + Γρ
νσV

σ
)

+ Γρ
µσ

(

∂V σ

∂xν + Γσ
νλV

λ
)

− Γλ
µν

(

∂V ρ

∂xλ + Γρ
λσV

σ
)

= ∂µ∂νV
ρ + (∂µΓ

ρ
νσ)V

σ + Γρ
νσ∂µV

σ + Γρ
µσ∂νV

σ + Γρ
µσΓ

σ
νλV

λ
− Γλ

µν∂λV
ρ
− Γλ

µνΓ
ρ
λσV

σ

(7)

We get the commutator by subtracting the same with the indices µ ↔ ν changed.

The first, sixth and seventh term immediately cancel (∂µ∂νV
ρ
− ∂ν∂µV

ρ = 0, −Γλ
µν∂λV

ρ +

Γλ
νµ∂λV

ρ = 0, etc.). So do the third and fourth term, and we are left with

[∇µ,∇ν ]V
ρ = (∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ)V

σ. (8)

The expression in the left is clearly a tensor, and so the expression in parentheses must be

a tensor itself. We thus write

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ (9)

where the Riemann tensor is identified as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ . (10)

A few points to note:

• We have not really demonstrated that the definition of the curvature tensor in Equation

10 is actually the same tensor that appeared in Equation 5, but in fact it’s true (try

to convince yourself, or see the book by Wald).

• You may find it surprising that the commutator [∇µ,∇ν ], which appears to be a dif-

ferential operator, has an action on vector fields which is a simple multiplicative trans-

formation. However, this is exactly what the Riemann tensor measures - the part of

the commutator of covariant derivatives which is proportional to the vector field.

• The right hand side in Equation 10 is constructed from non-tensorial elements; you can

check that the transformation laws all work out to make this particular combination a

legitimate tensor.

• The antisymmetry of Rρ
σµν in its last two indices is immediate from this formula and

its derivation.

• The curvature tensor is constructed from the affine connection and its first derivatives.

The affine connection itself is constructed from the metric tensor and its first deriva-

tives. Thus, the Riemann tensor is constructed from the metric, its first and second

derivatives.
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• Using what are by now our usual methods, the action of [∇ρ,∇σ] can be computed on

a tensor of arbitrary rank. The answer is

[∇ρ,∇σ]X
µ1···µk

ν1···νl = Rµ1
λρσX

λµ2···µk
ν1···νl +Rµ2

λρσX
µ1λ···µk

ν1···νl + · · ·

−Rλ
ν1ρσX

µ1···µk
λν2···νl −Rλ

ν2ρσX
µ1···µk

ν1λ···νl − · · · .
(11)

In particular, the commutation of a covariant vector is

[∇ρ,∇σ]Vµ = −Rλ
µρσVλ (12)

Equations 9, 11 and 12 imply that if the curvature tensor vanishes, the covariant deriva-

tives commute - as we would expect for a coordinate system that can be transformed

into a Minkowski coordinate system.

4. Riemann Tensor and the curvature of space

As we have seen, both the affine connection and the curvature tensor are derived from the

metric. This fact allows us to finally properly define what we mean by “flat” spaces, or spaces

for which the metric looks Euclidean or Minkowskian. For this we have the following theorem:

The necessary and sufficient conditions for the metric gµν(x) to be equivalent to

the Minkowski metric ηµν (in the sense that we can find a transformation x → ξ)

are (1) that the components of the curvature tensor vanish everywhere; and (2)

that the metric gµν has three positive and one negative eigenvalues.

Showing it is a necessary condition is easy. If we are in some coordinate system such that

∂σgµν = 0 (everywhere, not just at a point), then Γρ
µν = 0 and ∂σΓ

ρ
µν = 0; thus Rρ

σµν = 0 by

Equation 10. But this is a tensor equation, and if it is true in one coordinate system it must

be true in any coordinate system. Therefore, the statement that the Riemann tensor vanishes

is a necessary condition for it to be possible to find coordinates in which the components of

gµν are constant everywhere.

Showing it is sufficient condition requires some work. We start by looking at a point p,

for which we can choose (locally) coordinate system such that gµν = ηµν at p. Denote the

basis vectors at p by ê(µ), with components êσ(µ). Then by construction we have

gσρê
σ
(µ)ê

ρ

(ν)(p) = ηµν . (13)

Next we parallel transport the entire set of basis vectors from p to another point q; the

vanishing of the Riemann tensor ensures that the result will be independent of the path taken
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between p and q. Since parallel transport with respect to a metric compatible connection

preserves inner products, we must have

gσρê
σ
(µ)ê

ρ

(ν)(q) = ηµν . (14)

We therefore have specified a set of vector fields which everywhere define a basis in which

the metric components are constant. What we need to show is that this is a coordinate basis

- which can be done only if the curvature vanishes.

While we do know that if the ê(µ)’s are a coordinate basis, their commutator will vanish:

[ê(µ), ê(ν)] = 0 (15)

what we need is the converse: that if the commutator vanishes we can find coordinates yµ

such that ê(µ) =
∂

∂yµ
. This is a true result, known as Frobenius’s Theorem in differential

topology. We will not prove it here (see Schutz’s Geometrical Methods book for proof). The

commutator of the vector fields ê(µ) =
∂

∂yµ
is

[ê(µ), ê(ν)] = ∇ê(µ) ê(ν) −∇ê(ν) ê(µ). (16)

The covariant derivatives vanish, given the method by which we constructed our vector fields;

they were made by parallel transporting along arbitrary paths. If the fields are parallel

transported along arbitrary paths, they are certainly parallel transported along the vectors

ê(µ), and therefore their covariant derivatives in the direction of these vectors will vanish. The

commutator in Equation 16 thus vanishes, implying that we can find a coordinate system yµ

for which these vector fields are the partial derivatives. In this coordinate system the metric

will have components ηµν , as desired.

5. Algebraic properties of the Riemann tensor

In n-dimensional space, one could naively claim that the Riemann tensor, having four

indices, have n4 independent components. The anti-symmetry properties of the last two

indices (Equation 6) implies that these last two indices can have only n(n−1)/2 independent

values.

There are a number of other symmetries that reduce the independent components fur-

ther. Let’s consider these now.

The simplest way to derive these additional symmetries is to examine the Riemann

tensor with all lower indices,

Rρσµν = gρλR
λ
σµν . (17)
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Using the definitions of the Riemann tensor and the affine connection, we have

Rρσµν = gρλ(∂µΓ
λ
νσ − ∂νΓ

λ
µσ) + gρλ(Γ

λ
µαΓ

α
σν − Γλ

ναΓ
α
σµ)

= 1
2
gρλg

λτ (∂µ∂νgστ + ∂µ∂σgτν − ∂µ∂τgνσ − ∂ν∂µgστ − ∂ν∂σgτµ + ∂ν∂τgµσ)

+1
2
gρλ∂µg

λτ (∂νgστ + ∂σgτν − ∂τgνσ)−
1
2
gρλ∂νg

λτ (∂µgστ + ∂σgτµ − ∂τgµσ)

+gρλ(Γ
λ
µαΓ

α
σν − Γλ

ναΓ
α
σµ)

(18)

where in the 2nd and 3rd lines we expanded the affine connection: in the 2nd line we took the

derivative of ∂µgαβ... and in the 3rd line the derivative of the inverse metric.

Using the fact that partial derivatives commute, the first line on the right hand side of

equation 18 becomes

1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ).

We can use the relation

gρλ∂µg
λτ = −gλτ∂µgρλ = −gλτ (Γη

µρgηλ + Γη
µλgηρ) (19)

to write the 2nd and 3rd lines in equation 18 as

−(Γη
µρgηλ + Γη

µλgηρ)Γ
λ
νσ + (Γη

νρgηλ + Γη
νλgηρ)Γ

λ
µσ + gρλ(Γ

λ
µαΓ

α
σν − Γλ

ναΓ
α
σµ).

Most of the ΓΓ terms cancel (2nd and 5th, 4th and 6th), leaving us with

Rρσµν =
1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) + gηλ(−Γη

µρΓ
λ
σν + Γη

νρΓ
λ
µσ) (20)

(hopefully not too many typos on the way).

From Equation 20, we find the following algebraic properties of Rρσµν :

1. Symmetry under interchange of the first pair of indices with the second pair:

Rρσµν = Rµνρσ . (21)

2. Anti-symmetric

Rρσµν = −Rσρµν = −Rρσνµ = Rσρνµ (22)

3. Cyclicity: the sum of cyclic permutations of the last three indices vanishes:

Rρσµν +Rρµνσ +Rρνσµ = 0 . (23)
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It is frequently useful to consider contractions of the Riemann tensor. Even without the

metric, we can form a contraction known as the Ricci tensor:

Rµν = Rλ
µλν . (24)

In fact, the Ricci tensor is the only independent contraction (modulo conventions for the

sign, which of course change from place to place) of the curvature tensor formed from the

affine connection2. The Ricci tensor is symmetric,

Rµν = Rνµ , (25)

as a consequence of the various symmetries of the Riemann tensor. Using the metric, we can

take a further contraction to form the Ricci scalar:

R = Rµ
µ = gµνRµν . (26)

6. Riemann Tensor in n-dimensions

The symmetries considered above allow us to calculate the number of independent com-

ponents of the Riemann tensor. Let’s begin with the facts that Rρσµν is antisymmetric in the

first two indices, antisymmetric in the last two indices, and symmetric under interchange of

these two pairs. This means that we can think of it as a symmetric matrix R[ρσ][µν], where

the pairs ρσ and µν are thought of as individual indices. An m×m symmetric matrix has

m(m+ 1)/2 independent components, while an n× n antisymmetric matrix has n(n− 1)/2

independent components. We therefore have

1

2

[

1

2
n(n− 1)

] [

1

2
n(n− 1) + 1

]

=
1

8
(n4

− 2n3 + 3n2
− 2n) (27)

independent components. We still have the cyclicity (Equation 23), which implies that the

totally antisymmetric part of the Riemann tensor vanishes,

R[ρσµν] = 0 . (28)

This equation thus adds n(n− 1)(n− 2)(n− 3)/4! further constraints3 leaving us with

1

8
(n4

− 2n3 + 3n2
− 2n)−

1

24
n(n− 1)(n− 2)(n− 3) =

1

12
n2(n2

− 1) (29)

2Generally, we could form the Riemann tensor not from the metric, but we will not be interested in that

here.

3The first index can have n options; the second (n − 1) options, since for anti-symmetric tensor, if the

two indices are the smae ν = µ, it must be 0, and so on. However, since the order of which we select the

indices is unimportant, since exchange of any 2 indices gives the same result up to a sign, hence the division

by 4! to avoid double counting.



– 12 –

independent components of the Riemann tensor.

In four dimensions, therefore, the Riemann tensor has 20 independent components. (In

one dimension it has none.) These twenty functions are precisely the 20 degrees of freedom

in the second derivatives of the metric which we could not set to zero by a clever choice of

coordinates. This should reinforce your confidence that the Riemann tensor is an appropriate

measure of curvature.

7. The Bianchi identities

In addition to the algebraic identities discussed above, the curvature tensor obeys an

important differential identity. Consider the covariant derivative of the Riemann tensor,

evaluated in locally inertial coordinate system in which Γλ
µν vanishes (but not its derivatives

!)

∇λRρσµν = ∂λRρσµν

= 1
2
∂λ(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) .

(30)

The sum of cyclic permutations of the first three indices vanish:

∇λRρσµν +∇ρRσλµν +∇σRλρµν

= 1
2
(∂λ∂µ∂σgρν − ∂λ∂µ∂ρgνσ − ∂λ∂ν∂σgρµ + ∂λ∂ν∂ρgµσ

+∂ρ∂µ∂λgσν − ∂ρ∂µ∂σgνλ − ∂ρ∂ν∂λgσµ + ∂ρ∂ν∂σgµλ
+∂σ∂µ∂ρgλν − ∂σ∂µ∂λgνρ − ∂σ∂ν∂ρgλµ + ∂σ∂ν∂λgµρ)

= 0 .

(31)

Since this is an equation between tensors it is true in any coordinate system, even though we

derived it in a particular one. We recognize by now that the antisymmetry Rρσµν = −Rσρµν

allows us to write this result as

∇[λRρσ]µν = 0 . (32)

This is known as the Bianchi identity.

An especially useful form of the Bianchi identity comes from contracting twice on Equa-

tion 31:
0 = gνσgµλ(∇λRρσµν +∇ρRσλµν +∇σRλρµν)

= ∇
µRρµ −∇ρR +∇

νRρν ,
(33)

or

∇
µRρµ =

1

2
∇ρR . (34)
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(Notice that, unlike the partial derivative, it makes sense to raise an index on the covariant

derivative, due to metric compatibility, ∇ρgµν = 0.) If we define the Einstein tensor as

Gµν = Rµν −
1

2
Rgµν , (35)

then we see that the twice-contracted Bianchi identity (Equation 34) is equivalent to

∇
µGµν = 0 . (36)

You will not find it hard to imagine that the Einstein tensor, which is symmetric due to the

symmetry of the Ricci tensor and the metric, is of great importance in general relativity.

8. A few simple examples

The results of Equation 29 imply that in 1, 2, 3 and 4 dimensions there are 0, 1, 6 and

20 independent components of the curvature tensor, respectively. This means, e.g., that one-

dimensional manifolds (such as S1) are never curved; the intuition you have that tells you

that a circle is curved comes from thinking of it embedded in a certain flat two-dimensional

plane.

In two dimensions, the curvature has one independent component. Thus, in fact, all

of the information about the curvature is contained in the single component of the Ricci

scalar. Consider, for example a cylinder, R×S1. We can put a metric on the cylinder whose

components are constant in an appropriate coordinate system — simply unroll it and use

the induced metric from the plane (see Figure 5). In this metric, the cylinder is flat. (we

could choose a metric in which the cylinder is not flat, but the point is that it can be made

flat by choosing the appropriate metric). In fact, a similar conclusion can be drawn for the

torus (see Figure 6).

identify

Fig. 5.— A cylinder can be made flat by “unrolling” it.
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identify

Fig. 6.— A torus can also be made flat by “unrolling” it.

We can think of the torus as a square region of the plane with opposite sides identified

(in other words, S1
× S1), from which it is clear that it can have a flat metric even though

it looks curved from the embedded point of view.

Our favorite example is of course the two-sphere, with metric

ds2 = a2(dθ2 + sin2 θ dφ2) , (37)

where a is the radius of the sphere (thought of as embedded in R3). Without going through

the details (you were supposed to work it at home), the nonzero connection coefficients are

Γθ
φφ = − sin θ cos θ

Γφ
θφ = Γφ

φθ = cot θ .
(38)

One component of the Riemann tensor will be:

Rθ
φθφ = ∂θΓ

θ
φφ − ∂φΓ

θ
θφ + Γθ

θλΓ
λ
φφ − Γθ

φλΓ
λ
θφ

= (sin2 θ − cos2 θ)− (0) + (0)− (− sin θ cos θ)(cot θ)

= sin2 θ .

(39)

(The notation is obviously imperfect, since the Greek letter λ is a dummy index which is

summed over, while the Greek letters θ and φ represent specific coordinates.) Lowering an

index, we have
Rθφθφ = gθλR

λ
φθφ

= gθθR
θ
φθφ

= a2 sin2 θ .

(40)

It is easy to check that all of the components of the Riemann tensor either vanish or are

related to this one by symmetry. We can go on to compute the Ricci tensor via Rµν =

gαβRαµβν . We obtain

Rθθ = gφφRφθφθ = 1

Rθφ = Rφθ = 0

Rφφ = gθθRθφθφ = sin2 θ .

(41)
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The Ricci scalar is similarly straightforward:

R = gθθRθθ + gφφRφφ =
2

a2
. (42)

Therefore the Ricci scalar, which for a two-dimensional manifold completely characterizes

the curvature, is a constant over this two-sphere. This is a reflection of the fact that the

manifold is “maximally symmetric,” a concept we may define more precisely later (time

permits; although it means what you think it should).

Notice that the Ricci scalar is not only constant for the two-sphere, it is manifestly

positive. We say that the sphere is “positively curved”. From the point of view of someone

living on a manifold which is embedded in a higher-dimensional Euclidean space, if they are

sitting at a point of positive curvature the space curves away from them in the same way

in any direction, while in a negatively curved space it curves away in opposite directions.

Negatively curved spaces are therefore saddle-like (see Figure 7).

positive curvature
negative curvature

Fig. 7.— From a point of view of someone living on a manifold embedded in a higher

dimension Euclidean space, positive curvature (left) implies that the space curves away

in the same way in any direction, while negative curved space (right) the space curves in

opposite directions.

9. Geodesic deviation

The last topic we cover before getting to Einstein’s Equation is geodesic deviation.

While we motivated the curvature tensor by the need to construct a field equation to the

gravitational field, it turns out to be useful in expressing the effects of gravitation on physical

systems.

Consider a pair of freely-falling particles that travel on trajectories xµ(τ) and xµ(τ) +

δxµ(τ). The equations of motion are the geodesic equations,

d2xµ

dτ2
+ Γµ

ρσ(x)
dxρ

dτ
dxσ

dτ
= 0,

d2(xµ+δxµ)
dτ2

+ Γµ
ρσ(x+ δx)d(x

ρ+δxρ)
dτ

d(xσ+δxσ)
dτ

= 0.
(43)
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Taking the difference between these two equations, to first order in δxµ one gets

d2(δxµ)

dτ 2
+

∂Γµ
ρσ

∂xα
δxαdx

ρ

dτ

dxσ

dτ
+ 2Γµ

ρσ

dxρ

dτ

dδxσ

dτ
= 0 (44)

We can use this result to write the relative acceleration between the two nearby geodesics

as follows. Using Equation 2, we write

Aµ = D2(δxµ)
Dτ2

= D
Dτ

(

d(δxµ)
dτ

+ Γµ
ρσ

dxρ

dτ
(δx)σ

)

= d2(δxµ)
dτ2

+ d
dτ

(

Γµ
ρσ

dxρ

dτ
(δx)σ

)

+ Γµ
αβ

dxβ

dτ

(

d(δxα)
dτ

+ Γα
ρσ

dxρ

dτ
(δx)σ

)

= d2(δxµ)
dτ2

+ 2Γµ
ρσ

dxρ

dτ

d(δx)σ

dτ
+
(

dΓµ
ρσ

dxδ
dxδ

dτ

)

dxρ

dτ
(δx)σ + Γµ

ρσ
d2xρ

dτ2
(δx)σ + Γµ

αβΓ
α
ρσ

dxβ

dτ
dxρ

dτ
(δx)σ

(45)

Using now Equation 44, we get

Aµ =
dΓµ

ρσ

dxδ

dxδ

dτ

dxρ

dτ
(δx)σ −

∂Γµ
ρσ

∂xα
δxαdx

ρ

dτ

dxσ

dτ
+ Γµ

ρσ

d2xρ

dτ 2
(δx)σ + Γµ

αβΓ
α
ρσ

dxβ

dτ

dxρ

dτ
(δx)σ (46)

We now use the geodesic equation,

d2xρ

dτ 2
= −Γρ

σν

dxσ

dτ

dxν

dτ

and make a lot of relabeling of dummy indices (first term: σ → α, δ → σ; third term ρ → λ,

σ → α and ν → ρ; and 4th term, α → λ, σ → α, and β → σ) to write Equation 46 as

Aµ =

(

dΓµ
ρα

dxσ
−

dΓµ
ρσ

dxα
+ Γµ

σλΓ
λ
ρα − Γµ

αλΓ
λ
ρσ

)

dxσ

dτ

dxρ

dτ
(δx)α (47)

As the term in the parenthesis is simply the Riemann tensor (see Equation 10), we finally

write
D2(δxµ)

Dτ 2
= Rµ

ρσα

dxρ

dτ

dxσ

dτ
δxα (48)

Equation 48 is known as the geodesic deviation equation. It expresses something that

we might have expected: the relative acceleration between two neighboring geodesics is

proportional to the curvature.

Thus, although a freely falling particle appears to be at rest in a coordinate system

falling with the particle, a pair of nearby freely falling particles exhibit a relative motion

that can reveal the presence of a gravitational field to an observer that falls with them. This

is interpreted as a manifestation of gravitational tidal forces.
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