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This part of the course is based on Refs. [1], [2] and [3].

1. Derivation of the Equation

Finally, we have all the tools needed to work out Einstein’s field Equation, which explains

how the metric responds to energy and momentum. The basic idea is that existence of energy

(which is equal to mass, according to E = mc2) curves space time. In deriving this equation

we will use somewhat informal arguments, which are in fact close to the way Einstein himself

was thinking, as this is (to my opinion) the most straightforward way. For those interested,

Carroll provides a second derivation starting from the action and deriving the corresponding

Equation of motion.

We begin with the realization that we would like to find an equation which supersedes

the Poisson equation for the Newtonian potential:

∇2Φ = 4πGρ , (1)

where ∇2 = δij∂i∂j is the Laplacian in space and ρ is the mass density. (The explicit form

of Φ = −GM/r is one solution of Eq. 1, for the case of a point-like mass distribution.)

What characteristics should our sought-after equation possess? The logic goes as follows.

(I) On the left-hand side of Equation 1 we have a second-order differential operator acting on

the gravitational potential, and on the right-hand side a measure of the mass distribution.

(II) A relativistic generalization should take the form of an equation between tensors.

The tensor generalization of the mass density is the energy-momentum tensor Tµν . The

gravitational potential, meanwhile, should get replaced by the metric tensor. It is thus

reasonable to guess that the new equation will have Tµν set proportional to some tensor

which is second-order in derivatives of the metric. In fact, using the Newtonian limit for the

metric g00 = −(1+ 2Φ) and T00 = ρ, we see that in this limit we are looking for an equation

that predicts

∇2h00 = −8πGT00 , (2)
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with h00 ≡ 2Φ. We do though need to generalize it to a completely tensorial equation.

The left-hand side of Eq. 2 does not obviously generalize to a tensor. The first choice

might be to act the D’Alembertian ✷ = ∇µ∇µ on the metric gµν , but this is automatically

zero by metric compatibility (≡ gµν;λ = 0).

Fortunately, there is an obvious quantity which is not zero and is constructed from

second derivatives (and first derivatives) of the metric: the Riemann tensor Rρ
σµν . It doesn’t

have the right number of indices, but we can contract it to form the Ricci tensor Rµν , which

does; furthermore, it is symmetric. It is therefore reasonable to guess that the gravitational

field equations are

Rµν = κTµν , (3)

for some constant κ. In fact, Einstein did suggest this equation at one point.

Unfortunately, this suggestion too doesn’t work, as there is a problem with energy

conservation. According to the Principle of Equivalence, the statement of energy-momentum

conservation in curved spacetime should be

∇µTµν = 0 , (4)

which would then imply

∇µRµν = 0 . (5)

This is certainly not true in an arbitrary geometry; recall that when we discussed Bianchi

identity, we got

∇µRµν =
1

2
∇νR . (6)

But our proposed field equation implies that R = κgµνTµν = κT , so taking these together

we have

∇µT = 0 . (7)

The covariant derivative of a scalar is just the partial derivative, so Equation 7 is telling us

that T is constant throughout spacetime. This is highly implausible, since T = 0 in vacuum

while T > 0 in matter. We have to try harder.

(Actually we are cheating slightly, in taking the equation ∇µTµν = 0 so seriously. If as

we said, the equivalence principle is only an approximate guide, we could imagine that there

are nonzero terms on the right-hand side involving the curvature tensor. Later we will be

more precise and argue that they are strictly zero.)

By now we are quiet close. We already know of a symmetric (0, 2) tensor, constructed

from the Ricci tensor, which is automatically conserved: the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (8)
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which always obeys ∇µGµν = 0. We are therefore led to propose

Gµν = κTµν (9)

as a field equation for the metric. This equation satisfies all of the obvious requirements; the

right-hand side is a covariant expression of the energy and momentum density in the form of a

symmetric and conserved (0, 2) tensor, while the left-hand side is a symmetric and conserved

(0, 2) tensor constructed from the metric and its first and second derivatives. Equation 9

looks very promising; it only remains to see whether it actually reproduces gravity as we

know it.

To answer this, note that contracting both sides of Equation 9 yields (in four dimensions)

gµνGµν = gµν(Rµν −
1

2
Rgµν) = R−

1

2
Rgµνgµν = κT → R = −κT , (10)

and using this we can rewrite Equation 9 as

Rµν = κ(Tµν −
1

2
Tgµν) . (11)

This is identical to equation 9, just written slightly differently.

Let us show now that this equation predicts Newtonian gravity in the weak-field, time-

independent, slowly-moving-particles limit. In this limit the rest energy ρ = T00 will be

much larger than the other terms in Tµν , so we focus on the µ = 0, ν = 0 component of

Equation 11. Recall that in the weak-field limit we have gµν = ηµν + hµν , with |hµν | ≪ 1,

and gµν = ηµν − hµν . We can thus write

g00 = −1 + h00 ,

g00 = −1− h00 .
(12)

The trace of the energy-momentum tensor, to lowest nontrivial order, is

T = g00T00 = −T00 . (13)

Plugging this into Equation 11, we get

R00 =
1

2
κT00 . (14)

This is an equation relating derivatives of the metric to the energy density. To find the

explicit expression in terms of the metric (rather than its derivatives), we need to evaluate

R00 = Rλ
0λ0. In fact we only need Ri

0i0, since R0
000 = 0. We have

Ri
0j0 = ∂jΓ

i
00 − ∂0Γ

i
j0 + Γi

jλΓ
λ
00 − Γi

0λΓ
λ
j0 . (15)
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The second term here is a time derivative, which vanishes for static fields. The third and

fourth terms are of the form (Γ)2, and since Γ is first-order in the metric perturbation these

contribute only at second order, and can be neglected. Thus, to first order we are left with

only the first term, Ri
0j0 = ∂jΓ

i
00. From this we get

R00 = Ri
0i0

= ∂i
(

1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

)

= −1

2
ηij∂i∂jh00

= −1

2
∇2h00 .

(16)

Comparing to Equation 14, we see that in the Newtonian limit, the 00 component of Equation

9 becomes

∇2h00 = −κT00 . (17)

But this is identical to Equation 2, if we set κ = 8πG.

We have thus shown that in the Newtonian limit, Equation 9 indeed retrieves the familiar

Newtonian result gravitational potential. This guess thus seem to be a good one. With the

normalization fixed by comparison with the Newtonian limit, we can present Einstein’s

field equations for general relativity:

Rµν −
1

2
Rgµν = 8πGTµν . (18)

These tell us how the curvature of spacetime reacts to the presence of energy-momentum.

Einstein, you may have heard, thought that the left-hand side was nice and geometrical,

while the right-hand side was somewhat less compelling.

Einstein’s Equation is the most fundamental equation of general relativity. The way we

introduced it here is as a generalization of Poisson’s equation for the Newtonian gravitational

potential. Its importance is that it expresses how the presence of energy (mass)

source curves space time. Pretty much what we are going to do from now until the end

of the course is to explore its consequences, and look for solutions for this equation. The

description will be split into two parts: in the first part, we will explore vacuum solutions

(Tµν = 0): in this category falls most of what we discussed so far, such as astronauts (or other

objects) moving in space in the presence of external gravitation field. In fact, you already

know one solution to the equation - this is the flat Minkowski metric. However, clearly

there are other solutions, the second most important one (after the Minkowski metric) is the

Schwarzschield solution.

In the last part of the semester, we will write Einstein’s equation for the entire universe.

Clearly, the universe is not empty, and hence the right hand side of Equation 18 is non-zero.
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We will explore solutions in this case, the most important one results in the (Friedman)-

Robertson-Walker (FRW) metric that describes the evolution of the universe as a whole.

This branch of physics is known as Cosmology.

1.1. On the complexity of Einstein’s equation

Einstein’s equations may be thought of as second-order differential equations for the

metric tensor field gµν . There are ten independent equations (since both sides are symmetric

two-index tensors), which seems to be exactly right for the ten unknown functions of the

metric components. However, the Bianchi identity ∇µGµν = 0 represents four constraints on

the functions Rµν , so there are only six truly independent equations in Equation 18. In fact

this is appropriate, since if a metric is a solution to Einstein’s equation in one coordinate

system xµ it should also be a solution in any other coordinate system xµ′

. This means

that there are four unphysical degrees of freedom in gµν (represented by the four functions

xµ′

(xµ)), and we should expect that Einstein’s equations only constrain the six coordinate-

independent degrees of freedom.

As differential equations, these are extremely complicated; the Ricci scalar and ten-

sor are contractions of the Riemann tensor, which involves derivatives and products of the

Christoffel symbols, which in turn involve the inverse metric and derivatives of the metric.

Furthermore, the energy-momentum tensor Tµν will generally involve the metric as well. The

equations are also nonlinear, so that two known solutions cannot be superposed to find a

third. It is therefore very difficult to solve Einstein’s equations in any sort of generality, and

it is usually necessary to make some simplifying assumptions. Even in vacuum, where we

set the energy-momentum tensor to zero, the resulting equations (using Equation 11)

Rµν = 0 (19)

can be very difficult to solve. Thus, in order to actually solve Einstein’s equation, often

people use the simplifying assumption that the metric has a significant degree of symmetry.

This of course simplifies considerably the equation.

2. The cosmological constant

You may have noticed that there is another extra term that could be added to the left

hand side of Einstein’s field equation (Eq. 18), consistent with local conservation of Tµν .

This is a term of the form Λgµν , for some constant Λ. Adding it to the left hand side does
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not affect local conservation, because the covariant derivative of the metric is zero. The term

Λ is called the cosmological constant. The resulting field equation (in vacuum) is

Rµν −
1

2
Rgµν + Λgµν = 0 , (20)

Einstein’s original motivation for introducing Λ was that it became clear that there were no

solutions to his equations representing a static cosmology (a universe unchanging with time

on large scales) with a nonzero matter content. Indeed, it was believed in that times that

the universe is static. If the cosmological constant is tuned just right, it is possible to find a

static solution, but it is unstable to small perturbations.

This changed a few years later, when Hubble proved that the universe is in fact ex-

panding, hence it is not static (which Einstein’s equation would predict if the cosmological

constant was not added; to this Einstein referred to as the biggest mistake of his life). This

discovery led Einstein to reject his own suggestion.

The cosmological constant, though, made a great re-appearance. In modern day, the

Λgµν term is moved to the right hand side, and one can think of it as a kind of energy-

momentum tensor, with Tµν = −Λgµν (it is automatically conserved by metric compatibil-

ity). Then Λ can be interpreted as the “energy density of the vacuum,” a source of energy

and momentum that is present even in the absence of matter fields. This interpretation is

important because quantum field theory predicts that the vacuum should have some sort of

energy and momentum. In ordinary quantum mechanics, an harmonic oscillator with fre-

quency ω and minimum classical energy E0 = 0 upon quantization has a ground state with

energy E0 =
1

2
~ω. A quantized field can be thought of as a collection of an infinite number

of harmonic oscillators, and each mode contributes to the ground state energy. The result is

of course infinite, and must be appropriately regularized, for example by introducing a cutoff

at high frequencies. The final vacuum energy, which is the regularized sum of the energies

of the ground state oscillations of all the fields of the theory, has no good reason to be zero

and in fact would be expected to have a natural scale

Λ ∼ m4
P , (21)

where the Planck mass mP is approximately 1019 GeV, or 10−5 grams. Observations of the

universe on large scales allow us to constrain the actual value of Λ, which turns out to be

smaller than the prediction of Equation 21 by at least a factor of 10120(!). This is the largest

known discrepancy between theoretical estimate and observational constraint in physics,

and convinces many people that the “cosmological constant problem” is one of the most

important unsolved problems today. On the other hand the observations do not tell us that

Λ is strictly zero (on the contrary, it isn’t), and in fact allow values that can have important
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consequences for the evolution of the universe. This mistake of Einstein’s therefore continues

to bedevil both physicists and astronomers. (Further discussion is found in QFT course).

3. Symmetries and Killing vectors

In order to search for solutions to Einstein’s equation, our best bet is thus to try and use

metric which has symmetric properties. The main problem though can be phrased something

along: “we would like to use the symmetry of the metric space in order to get information

about the metric, but how can we do that before we know the metric which tells us the

symmetry ?”. Thus, what we really need is a way to describe a symmetry in a covariant

language, namely, independent on particular coordinate system. This is done by means of

Killing vectors.2

We say that a manifold, M possess a symmetry if the geometry is invariant under a

certain transformation that maps M into itself. In other words, the metric is the same in

two different points on M. A symmetry of the metric is called isometry.

As a simple example, we may look at Minkowski space,

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2.

There are several isometries of this space, such as translations (xµ → xµ + aµ), or Lorentz

transformations (xµ → Λµ
νx

ν).

Indeed, we can immediately recognize that the metric is invariant under translations, as

the metric coefficients ηµν are independent of the individual coordinate functions, xµ. This

is a generally true statement: whenever ∂σgµν = 0 for some fixed direction σ (but any µ, ν),

there is a symmetry under translation along xσ:

∂σgµν = 0 → xσ → xσ + aσ is a symmetry. (22)

3.1. Isometries and the motion of test particles

Isometries are particularly important when considering the motion of test particles which

move along geodesics: the momentum component, pσ is a conserved quantity of the motion.

2After the mathematician Wilhelm Killing, not because it is particularly difficult!.



– 8 –

The proof goes as follows. Recall that we showed (at the end of the chapter about

“Tensors”), that the geodesic equation (at least, for a time-like geodesic) can be written as

∇UU = Uλ∇λU
µ = 0, (23)

where Uµ = dxµ/dτ is the tangent vector along the path, and can therefore be rightfully

considered as the 4-velocity.

Similarly, we can write this in terms of the 4-momentum pµ = mUµ,

pλ∇λp
µ = 0 (24)

Using the metric compatibility ∇λgµρ = 0 we are free to lower the index µ. We expand

the covariant derivative to obtain

pλ∂λpµ − Γρ
λµp

λpρ = 0 (25)

The first term expresses the change of the momentum components along the path:

pλ∂λpµ = m
dxλ

dτ
∂λpµ = m

dpµ
dτ

(26)

The second term gives

Γρ
λµp

λpρ = 1

2
gρν (∂λgµν + ∂µgνλ − ∂νgλµ) p

λpρ
= 1

2
(∂λgµν + ∂µgνλ − ∂νgλµ) p

λpν

= 1

2
(∂µgνλ) p

λpν ,

(27)

where in the last line we used the symmetry of pλpν to cancel the first and third terms on

the right.

We thus find that the geodesic equation takes the form:

m
dpµ
dτ

=
1

2
(∂µgνλ) p

λpν . (28)

Note that this calculation is completely general, and so far we made no assumption about

any symmetry.

However, now we see that if all the metric coefficients are independent of the coordinate

xσ, namely ∂σgµν = 0, we find that this isometry implies that the momentum component pσ
is a conserved quantity of the motion,

∂σgµν = 0 →
dpσ
dτ

= 0. (29)

This result, in fact, holds along any geodesic - though you might noted that we derived it

only for time-like geodesic.

The fact that such conserved quantities exist implies that isometries are extremely useful

in studying the motion of test particles in curved manifolds.



– 9 –

3.2. General description of symmetries: Killing vectors

Independence of the metric components on one or more coordinates implies the existence

of an isometry. The converse, though, does not necessarily hold: for example, in Minkowski

space there are 4 translations and 6 Lorentz transformations - total of 10, which is larger

than the dimension of the space (4). Thus, the existence of an isometry does not always

manifest itself in a simple way.

In order to develop a systematic way of finding isometries, we proceed as follows. We

promote the right hand side of Equation 29, which represents the conservation of one compo-

nent of the momentum to a covariant form. Assume that gµν is independent of the coordinate

xσ. We consider the vector

K ≡ ∂σ⋆
, (30)

or, in component notation

Kµ = (∂σ⋆
)µ = δµσ⋆

. (31)

We say that the vector Kµ generates the isometry; that is we express an infinitesimal

transformation that leaves the geometry invariant as a transformation along Kµ.

Using this vector, we write each component of the momentum (a scalar) in a manifestly

covariant form:

pσ⋆
= Kµpµ = Kµp

µ (32)

(note the somewhat misleading notation - pσ⋆
represents a single component of the momen-

tum, hence the σ⋆).

Next, we note that the conservation of this momentum component along the geodesic,

is equivalent to the statement that its directional derivative along the geodesic vanishes.

Namely,
dpσ⋆

dτ
= 0 ⇔ pµ∇µ(Kνp

ν) = 0. (33)

Expanding the expression on the right, we get

pµ∇µ(Kνp
ν) = pµKν∇µp

ν + pµpν∇µKν

= pµpν∇µKν

= 1

2
pµpν (∇µKν +∇νKµ) .

(34)

Here, in the second line we used the geodesic Equation (pµ∇µp
ν = 0) to remove the first

term on the right. In the third line, we used the fact that pµpν is automatically symmetric

in µ and ν, so only the symmetric part of ∇µKν has a non-zero contribution.

We therefore conclude that for any vector Kµ that satisfies

∇µKν +∇νKµ ≡ Kν;µ +Kµ;ν = 0 (35)
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implies that Kνp
ν is conserved along a geodesic trajectory:

∇µKν +∇νKµ = 0 ⇒ pµ∇µ(Kνp
ν) = 0. (36)

Equation 35 is known as Killing Equation. Any four-vector Kµ(x) that satisfies this

Equation is said to be a Killing vector field, or simply Killing vector of the metric

gµν(x).

Clearly, if the metric is manifestly independent of some coordinate xσ, the vector ∂σ
will satisfy Killing’s equation. However, Killing’s equation is more general: if a vector

Kµ satisfies Killing’s Equation, it is always possible to find a coordinate system in which

K = ∂σ. This can be seen by recalling that we derived the Killing Equation 35 using this

same requirement (see Equation 29). I provide a second proof of that, which is based on the

derivative in Weinberg, in the appendix.

As a final remark, note that in n ≥ 2 dimensions, there can be more Killing vectors

than dimensions. This is because a set of Killing vector fields can be linearly independent,

although at any one point on the manifold the vectors at that point are linearly dependent.

This is because in general, the coefficients in the linear combination of the Killing vector

fields may not be constant, but vary over the manifold.

A. A second, direct derivative of Killing Equation

Weinberg provides a different, more direct (I think) way of deriving Killing Equation,

which is somewhat more subtle; still, I think it is useful to give it as a reference, as in some

basic sense it complements the derivative presented above.

Consider a general manifold, M, and a vector field V µ(x) defined at the vicinity of the

point x on a manifold. We define the integral curves of the vector field to be those curves

xµ(t) which solve
dxµ

dt
= V µ . (A1)

Note that this familiar-looking equation is now to be interpreted in the opposite sense from

our usual way — we are given the vectors, from which we define the curves. Solutions to

Equation A1 are guaranteed to exist as long as we don’t do anything silly like run into the

edge of our manifold; any standard differential geometry text will have the proof, which

amounts to finding a clever coordinate system in which the problem reduces to the funda-

mental theorem of ordinary differential equations.

The vector V µ thus defines a curve on the manifold which we parameterized by t. We

can now change the coordinates along this curve from xµ to xµ+ t; while this can be thought
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of in the usual way of coordinate change, what we mean is that we are defining a map

φ : M → M which “move the points on the manifold, and then evaluate the coordinates

of the new points” (this is a specific example of a diffeomorphism, which is an invertible,

smooth function that maps a manifold to another).

Consider now a tensor T defined over all space. We say that the tensor is form-

invariant, or simply invariant under coordinate transformation xµ′

= xµ + tV µ (|t| ≪ 1)

if T (xµ) = T (xµ′

). The transformation is called symmetry.

The tensor that we are interested in is the metric tensor. Recall that under general

coordinate transformation, at any given point xµ the metric tensor transforms as

gµ′ν′(x
′) =

∂xα

∂xµ′

∂xβ

∂xν′
gαβ(x), (A2)

or alternatively

gµν(x) =
∂xα′

∂xµ

∂xβ′

∂xν
gα′β′(x′). (A3)

We now make use of a very delicate point: x and x′ corrspond to the same physical point that

is expressed in different coordinate systems. In the different frames (unprimed and primed)

it is expressed as two different coordinates. (Think of a translation: e.g., x′ = x + 3. The

point x = 0 and x′ = 3 correspond to the same physical point, but in the different frames it

is described by different coordinates).

We now use the assumption that gα′β′ is form invariant under the transformation xµ′

=

xµ + tV µ, namely when moving from xµ to xµ′

, the metric does not change: gα′β′(x′) =

gαβ(x) = gαβ(x
′) to write

gµν(x) =
∂xα′

∂xµ

∂xβ′

∂xν
gαβ(x+ tV ) (A4)

A transformation that fulfills Equation A4 (namely, for which the metric tensor is form-

invariant) is called isometry, which we encountered earlier. The vector field V µ(x) which

fulfills this condition is the Killing vector field.

The condition that V µ be a Killing vector field can be found by using the assumption

|t| ≪ 1 and writing Equation A4 to first order in t,

gµν =
(

δαµ + t∂V
α

∂xµ

)

(

δβν + t∂V
β

∂xν

)(

gαβ +
∂gαβ

∂xκ tV
κ
)

0 = ∂V α

∂xµ gαν +
∂V β

∂xν gµβ +
∂gµν
∂xκ V

κ.
(A5)

Using Vσ = gµσV
µ and taking the differential of (V αgαν) etc., we can write Equation A5

as
0 = ∂Vν

∂xµ + ∂Vµ

∂xν + V κ
(

∂gµν
∂xκ − ∂gκν

∂xµ − ∂gµκ
∂xν

)

= ∂Vν

∂xµ + ∂Vµ

∂xν − 2VκΓ
κ
µν

(A6)
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or, in a compact form,

Vµ;ν + Vν;µ = 0, (A7)

which is the familiar Killing Equation, 35. Any four-vector Vµ(x) that satisfies Equation A7

is said to be a Killing vector of the metric gµν(x).

Killing vectors have a very simple geometric interpretation: If the metric is independent

of a coordinate, say, e.g., x1 namely the transformation x1 → x1 + C leaves the metric

unchanged, then the associated Killing vector lies along the direction in which the

metric doesn’t change. In our example, V = ∂/∂x1.

By far the most useful fact about Killing vectors is that Killing vectors imply conserved

quantities associated with the motion of free particles. If xµ(λ) is a geodesic with tangent

vector Uµ = dxµ/dλ, and Kµ is a Killing vector, then

Uν∇ν(KµU
µ) = UνUµ∇νKµ +KµU

ν∇νU
µ

= 0 ,
(A8)

where the first term vanishes from Killing’s equation and the second from the fact that

xµ(λ) is a geodesic. Thus, the quantity KµU
µ is conserved along the particle’s worldline.

This can be understood physically: by definition the metric is unchanging along the direction

of the Killing vector. Loosely speaking, therefore, a free particle will not feel any “forces” in

this direction, and the component of its momentum in that direction will consequently be

conserved.
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