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1. Introduction

We now turn our attention to the physics of gravitation, as described by general rela-

tivity. The mathematical formalism developed in the study of special relativity is going to

be of great use - and will be extended in developing the general relativistic formalism. The

discussion is naturally divided into two:

1. How the existence of matter in the universe influences space-time to create curva-

ture (non-flat space time). The answer to this question is given by Einstein’s field

equation.

2. How do particles (including massless photons) travel in curved space-time, in such a

way that we call their trajectories as being influenced by “gravity”.

We will try to develop the theory from basic physical principles and argue that these lead

naturally to an almost unique physical theory.

2. The Equivalence Principle

The experimental results of Eötvös and others show that the inertial mass, mI is equal to

the gravitational mass, mg (see the introduction part). This experimental result is sometimes

referred to as the weak equivalence principle (WEP).

The WEP has far-reaching consequences. As noted by Einstein in his famous thought

experiment, it implies that a scientist in a freely-falling (closed) elevator has no way of

measuring gravity. Alternatively, the WEP implies that there is no way to disentangle

the effects of gravitational field from those of being in a uniformly accelerating frame. (This
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is in contrast to electromagnetic field, since the charge q differs from the inertial mass; in

gravitational field, mg is the gravitational “charge”).

We do though have to be careful and limit our discussion to “small enough” regions in

space time. If the sealed elevator was sufficiently big, the gravitational field would change

from place to place inside the elevator, which could be measured. We can therefore re-state

the WEP as “the laws of freely-falling particles are the same in a gravitational field and in

a uniformly accelerated frame, in a small enough region of space-time”.

Motivated by the equivalence of mass and energy, Einstein postulated an even stronger

statement. Einstein postulated that

At every point in arbitrary gravitational field, it is possible to choose a
locally inertial coordinate system, such that (within a sufficiently small re-
gion of that point) the laws of nature take the same form as in unaccelerated
Cartesian coordinate system.

This is known as the strong equivalence principle, or the equivalence principle,

for short. It implies that at every point in arbitrary strong gravitational field, the laws of

special relativity hold locally. By “locally”, we mean a region in space around the point

in question in which the gravitational field can be considered (roughly) constant. It is very

difficult to imagine theories which respect the WEP but not the strong equivalence principle.

The equivalence principle implies (at least, suggests) that the action of gravity

should be attributed to the curvature of space-time: it implies that there is re-

ally no such thing as a globally “unaccelerated” (inertial) frame. One massive object in the

universe is enough to provide a gravitational field, and every frame that we can imagine

would be accelerated in this field. There is no such thing as “gravitationally neutral object”,

with respect to which we can measure the acceleration due to gravity: gravity is inescapable.

Note that the equivalence of mass and energy implies that this is true for massless particles

as well.

We can start by building a locally freely falling inertial frame. However, due to the

inhomogeneities of gravitational field, if we try to extend this inertial frame too far, a freely

falling object will look like it is “accelerating”, with respect to this reference frame. Thus,

from here on we will talk only about locally inertial frames.
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2.1. Gravitational redshift

A direct consequence of the equivalence principle (with no need to get into the details of

GR !) is the change in the energy of photons as they propagate in gravitational field, known

as gravitational redshift.

Let us consider 2 observer (say “Alice” and “Bob”) separated by a distance h in a

uniform gravitational field with acceleration g (think of Alice as located on the top of a

tower of height h above Bob).

Alice emits two photons, separated by interval ∆τA, as measured by her own clock

(located at her position). What is the time interval ∆τB between the two photons measured

by Bob ?

The equivalence principle implies that ∆τB < ∆τA. Let us understand why. According

to the equivalence principle, we can imagine Alice and Bob instead of being in a gravitational

field, to be in an accelerated rocket, far in outer space where there is no gravitational field;

however, the rocket is accelerated at acceleration a = g. Because of the acceleration,

Bob receives the signals when he is moving at a faster rate than when they were

emitted.

Let us assume that over the time of interest, we can ignore second order terms (v/c)2,

and (gh/c2)2 (but not first order ones). While we don’t have to use this assumption, it

simplifies the calculations. When neglecting (v/c)2, we can neglect time dilation and Lorentz

contraction, and stick with “classical” Newtonian mechanics. Our results will be good to

order of gh/c2.

As the rocket accelerates along the z axis, Bob’s position is zB(t) = (1/2)gt2, while

Alice’s position is zA(t) = (1/2)gt2 + h. Assume that Alice sent the first photon at time

t = 0. Bob received the first pulse at time t1. The distance traveled by the first photon is:

zA(t = 0)− zB(t1) = ct1
h− 1

2
gt2

1
= ct1.

(1)

Alice emits the second photon at time t = ∆τA, while Bob receives it at time ∆τB after

receiving the first photon, which is t = t1 + ∆τB. The distance traveled by the second

photon is thus

zA(∆τA)− zB(t1 +∆τB) = c(t1 +∆τB −∆τA)

h+ 1

2
g∆τ 2A − 1

2
g (t1 +∆τB)

2 = c(t1 +∆τB −∆τA)

h− 1

2
gt2

1
− gt1∆τB + 1

2
g(∆τ 2A −∆τ 2B) = c(t1 +∆τB −∆τA)

h− 1

2
gt2

1
− gt1∆τB ≃ c(t1 +∆τB −∆τA)

(2)
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where in the last line we assumed that ∆τA is small, so we kept only linear terms in ∆τA,

∆τB. Subtracting Equation 1 from Equation 2, we are left with

−gt1∆τB ≃ c(∆τB −∆τA) (3)

Using t1 ≃ h/c (allowed, as we neglect terms of second order and higher), we eventually get

∆τB ≃ ∆τA

(

1

1 + gh
c2

)

≃ ∆τA

(

1−
gh

c2

)

(4)

Thus, the interval in which two photons are received is smaller by a factor ≈ (1 −

gh/c2) than the interval in which they were emitted. The equivalence principle tells us that

exactly the same effect occurs in a uniform gravitational field. Since gh is the difference

in gravitational potential, ∆Φ, we can write ∆τB ≃ ∆τA(1 − ∆Φ/c2). When the receiver

is in lower gravitational potential (=deeper in the gravitational field) than the emitter, the

signal will be received more quickly than emitted. If, on the other hand, the receiver is in

higher potential, the signal will be received more slowly than emitted. This had been tested

experimentally.

Similarly, the crest of a light wave of frequency ν can be thought of as a series of signals

emitted at the rate which is equal to the frequency of the wave. Thus, Equation 4 can be

applied for light. Since ν ∝ ∆τ−1, if a light is emitted at frequency ν⋆ from the surface of a

star, its observed frequency by a distant observer will be

ν∞ = ν⋆

(

1−
∆Φ

c2

)

= ν⋆

(

1−
GM

Rc2

)

, (5)

where M is the mass of the star and R is its radius. (This is of course accurate only to first

order, namely to small values of GM/Rc2). This frequency is less than its emitted frequency;

alternatively, the wavelength of the light λ = c/ν increases as it leaves the gravitational

potential, which shifts it towards the red part of the spectrum. Hence the term “red-shift”.

Note: don’t confuse the gravitational redshift caused by photon propagation from

deeper gravitational potential to a shallower one with the cosmological redshift caused by the

expansion of the universe. This will be discussed at the later stages of the course.

A few examples are given in table 1.

3. Mathematical description of curved space time

In the example given above of a gravitational redshift, the two photons follow exactly

the same paths in space-time. Thus, simple geometry tells us that the time intervals, ∆τA
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object R [cm] M [gr] GM/Rc2

Earth 6× 108 6× 1027 10−9

Sun 1011 1033 10−6

White dwarf 109 1033 10−4

Neutron star 106 1033 10−1

Table 1: Typical values of gravitational redshift.

and ∆τB should be the same; however, we saw that this is not the case. The reason is of

course that space-time cannot be described by “simple geometry”. A better description is

that in the presence of gravity, space-time is curved. We shell proceed by adopting

this assumption of curved space-time, and see where it leads us.

The principle of equivalence tells us that the laws of physics, in small enough regions of

space-time look like those of special relativity. We can thus start by looking at an arbitrary

point in space time and set a freely-falling coordinate system ξα, in which the laws of special

relativity hold. Thus, we can write the proper time as

dτ 2 = −
1

c2
ηαβdξ

αdξβ (6)

This coordinate system is (locally) inertial; thus, if no forces act on a particle, its trajectory

is given by
dUα

dτ
=

d2ξα

dτ 2
= 0, (7)

where Uα ≡ dξα/dτ is the four velocity (see chapter on SR, equations (62) and (57)).

We now want to express the proper time in any arbitrary coordinate system, xµ. Using

the chain rule, we write

dτ 2 = −
1

c2
ηαβ

∂ξα

∂xµ
dxµ ∂ξ

β

∂xν
dxν = −

1

c2
gµνdx

µdxν (8)

where gµν is the metric tensor, defined as

gµν ≡ ηαβ
∂ξα

∂xµ

∂ξβ

∂xν
. (9)

In our new system, xµ, being arbitrary, a free-falling particles does seem to be accelerated.

Let us see how the acceleration looks. We write Equation 7 in our new coordinate system:

0 = dUα

dτ
= d

dτ

(

∂ξα

∂xµ
dxµ

dτ

)

=
((

∂2ξα

∂xµ∂xν

)

(

dxν

dτ

)

)

(

dxµ

dτ

)

+
(

∂ξα

∂xµ

)

(

d2xµ

dτ2

) (10)
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We now multiply Equation 10 by ∂xλ/∂ξα and use the product rule,

(

∂ξα

∂xµ

)(

∂xλ

∂ξα

)

= δλµ (11)

to write the equation of motion as

0 =
d2xλ

dτ 2
+ Γλ

µν

dxµ

dτ

dxν

dτ
. (12)

Here, Γλ
µν is the affine connection, defined by

Γλ
µν ≡

∂xλ

∂ξα
∂2ξα

∂xµ∂xν
. (13)

We can write the equation of motion in a form that clarifies the acceleration term,

duλ

dτ
= −Γλ

µνu
µuν , (14)

where uµ ≡ dxµ/dτ is the 4-velocity in the new (non-inertial) frame.

Note. Mathematicaly, the affine connection gives us a way of relating vectors in the

tangent spaces of nearby points, hence its name. We havn’t yet defined that properly, and

so we will return to this point later.

If we are dealing with the motion of massless particles, the equation of motion takes the

same form as Equations 7, 8 and 10, only that τ needs to be replaced with some arbitrary

parameter σ, as dτ is always zero along the world line (see discussion in §4.3 in the chapter

on SR). Thus, we have
dUα

dσ
= d2ξα

dσ2 = 0,

0 = −gµν
dxµ

dσ
dxν

dσ
,

0 = d2xλ

dσ2 + Γλ
µν

dxµ

dσ
dxν

dσ

(15)

(compare to Equations 7, 8, 12). Equations 14, 15 are known as the geodesic equation.

These describe the motion of a free particle, as measured by arbitrary coordinate system.

4. The relation between the affine connection and the metric tensor

Let us see what we have done so far. We started from an inertial frame (ξµ), in which

a particle is freely-falling, as no acceleration acts on it. We then changed to a different

coordinate system (xµ), in which the particle seems to accelerate (Equation 14). Up to this

point, we just did a mathematical operation of coordinate changes.
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However, we would also like to give a physical interpretation: the acceleration, de-

scribed by the affine connection Γλ
µν , will be interpreted as due to the gravitational force.

Thus, the affine connection represents, in some way, the gravitational force (although it has

a broader mathematical definition).

In this new frame, the proper time interval dτ is determined by the metric tensor, gµν
(see Equation 8). Thus, there should be an obvious connection between the metric tensor gµν
and the affine connection Γλ

µν . In fact, as we show here, the affine connection is determined by

the derivatives of the metric tensor. Hence, the metric tensor also serves as the gravitational

potential (whose derivative determines the force).

The calculation is done as follows. We begin by the definition of the metric tensor in

Equation 9. We differentiate with respect to xλ, to get

∂gµν
∂xλ

=
∂2ξα

∂xλ∂xµ

∂ξβ

∂xν
ηαβ +

∂ξα

∂xµ

∂2ξβ

∂xλ∂xν
ηαβ (16)

Using the definition of the affine connection in Equation 13, we can write

∂2ξα

∂xµ∂xν
= Γλ

µν

∂ξα

∂xλ
(17)

[formally, Equation 17 is obtained from Equation 13 by using the product rule, (∂ξβ/∂xλ)(∂xλ/∂ξα) =

δβα]. Using Equation 17 in Equation 16 gives

∂gµν
∂xλ

= Γρ
λµ

∂ξα

∂xρ

∂ξβ

∂xν
ηαβ + Γρ

λν

∂ξα

∂xµ

∂ξβ

∂xρ
ηαβ = Γρ

λµgρν + Γρ
λνgρµ, (18)

where we used again the definition of gµν in Equation 9.

We now add to Equation 18 the same Equation with µ and λ interchanged, and subtract

the same equation with ν and λ interchanged. We get:

∂gµν
∂xλ + ∂gλν

∂xµ −
∂gµλ
∂xν = Γκ

λµgκν + Γκ
λνgκµ

+Γκ
λµgκν + Γκ

µνgκλ
−Γκ

νµgκλ − Γκ
λνgκµ

= 2Γκ
λµgκν ,

(19)

where we have used the fact that both Γκ
νµ and gµν are symmetric under interchange of µ

and ν. We now define the matrix gµν as the inverse of the matrix gµν , namely

gνσgνκ = δσκ , (20)

and multiply Equation 20 by (1/2)gνσ, to get

Γσ
λµ =

1

2
gνσ
(

∂gµν
∂xλ

+
∂gλν
∂xµ

−
∂gµλ
∂xν

)

. (21)
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The right hand side of Equation 21 is often called a Christoffel symbol, and denoted by

{

σ

λµ

}

(22)

Example. Using Equation 8, the metric can be defined on any space. As a siple

example, consider a 2-dimensional flat space, written in r, θ coordinates. An element of

length is dS2 = dr2 + r2dθ2, and thus the metric tensor is

gµν =

(

1 0

0 r2

)

. (23)

Hence,

gµν =

(

1 0

0 1/r2

)

, (24)

and the only non-zero components of the affine connection are

Γr
θθ = −r ; Γθ

rθ = Γθ
θr =

1

r
(25)

We will continue with this example below.

5. The geodesic equation and the variational principle

Let us consider the motion of a very small (test) particle moving in a gravitational field.

By test particle, we mean a particle whose mass is so small that it produces no spacetime

curvature by itself.

We consider no forces acting on the particle apart from gravitational force (namely,

no EM forces, etc.). Such a particle is called “freely falling” or “free” for short. Note the

difference between GR and Newtonian mechanics: In Newtonian mechanics, a “free” particle

is not influenced by any force, including gravitational force, while in GR gravity is included;

this is because gravity is not considered as a “force” but as a curvature in space time.

The general principle for motion of a free (massive) test particle is not changed between

SR and GR: a particle takes the shortest path, in the sense that the path the particles

moves along between points A and B is the path that extremize (minimize) the proper

time between the points. This is a generalization of the concept of a “straight line” in

Euclidean space: a “straight line” is the path of shortest distance between two points. Such

paths are known as geodesics, and the equation of motion of a free particle is called the

geodesic equation.
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The treatment is very similar to the treatment done in SR; the difference would be that

the proper time is given by Equation 8 rather than Equation 6. Let us work first the SR

treatment, although the answer should be clear already.

5.1. Equation of motion of free particle in SR from the variational principle

We want to find the path that extremizes τ . We thus write

τA−B =

∫ B

A

dτ =

∫

dλ

[(

−
1

c2

)

ηαβ
dξα

dλ

dξβ

dλ

]1/2

, (26)

where λ is a parameter along the world line of the particle. We seek the world line that

extremizes τA−B. For that, we can use the variation principle: finding the path for which

τA−B does not change when a small change δξα(λ) occurs. This is an identical problem

to problems studied in Newtonian mechanics, where the integrand plays the role of the

Lagrangian, ξα is the dynamical variable and dλ is the time.

We can thus write Lagrange’s equation of motion,

−
d

dλ

(

∂L

∂
(

dξσ

dλ

)

)

+
∂L

∂ξσ
= 0, (27)

where

L ≡

(

−
1

c2
ηαβ

dξα

dλ

dξβ

dλ

)1/2

, (28)

and thus ∂L/∂ξσ = 0.

The Equation of motion (Equation 27) thus becomes

d

dλ

(

1

2L

(

−
1

c2

)

2ησβ
dξβ

dλ

)

= 0 (29)

where the extra factor of 2 comes from the symmetry between α and β, and use was made

of δασ . Since L = dτ/dλ, we obtain

d

dλ

(

dξβ

dτ

)

= 0, (30)

and multiplying by dλ/dτ we get the familiar result,

d2ξβ

dτ 2
= 0. (31)

Not surprisingly, this is identical to Equation (62) in the chapter on SR (without forces).
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5.2. Equation of motion of free particle in GR from the variational principle

In a completely analogue way to the special relativistic case, the motion of a free particle

in curved space time is given by taking the extremum of

τA−B =

∫ B

A

dτ =

∫

dλ

[(

−
1

c2

)

gαβ
dxα

dλ

dxβ

dλ

]1/2

, (32)

The Lagrangian is

L ≡

(

−
1

c2
gαβ

dxα

dλ

dxβ

dλ

)1/2

, (33)

and Lagrange’s equation becomes

d
dλ

(

1

2L

(

− 1

c2

)

2gσβ
dxβ

dλ

)

= − 1

c2
1

2L

(

∂gαβ

∂xσ
dxα

dλ
dxβ

dλ

)

d
dτ

(

gσβ
dxβ

dτ

)

= 1

2

∂gαβ

∂xσ
dxα

dτ
dxβ

dτ

(34)

where in the last line we multiplied both sides by dλ/dτ . We can thus write the equation of

motion as
∂gσβ
∂xµ

dxµ

dτ

dxβ

dτ
+ gσβ

d2xβ

dτ 2
−

1

2

∂gαβ
∂xσ

dxα

dτ

dxβ

dτ
= 0 (35)

or by noticing the symmetry in α and β and re-shuffling dummy indices in the first term,

gσβ
d2xβ

dτ 2
+

1

2

(

∂gσβ
∂xα

+
∂gασ
∂xβ

−
∂gαβ
∂xσ

)

dxα

dτ

dxβ

dτ
= 0 (36)

multiplying by the inverse of the metric gσρ, we obtain the equation of motion for a free

particle, or the geodesic equation in curved space time,

d2xρ

dτ 2
+ Γρ

αβ

dxα

dτ

dxβ

dτ
= 0 (37)

(not surprising, this is identical to Equation 14). Alternatively, Equation 37 could be written

in the form
duρ

dτ
+ Γρ

αβu
αuβ = 0. (38)

Similarly, photons travel along null worldline, namely dτ = 0. Their path can be

parameterized by a parameter λ, so that xα = xα(λ) along their world line. Their equation

of motion, which is known as the geodesic equation for null geodesics is

d2xρ

dλ2
= −Γρ

αβ

dxα

dλ

dxβ

dλ
(39)

Null curves that satisfy Equation 39 are known as null geodesics. Light rays move on null

geodesics. Note that λ 6= τ , since τ = 0 along null geodesics !. Rather, λ is a parameter

describing the path of a photon.
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6. The Newtonian limit (weak field approximation)

Let us now see what form the geodesic equation obtains in the weak field (=Newto-

nian limit) approximation. Obviously, we expect to retrieve the familiar Newtonian result,

otherwise, we are in trouble !.

We define “Newtonian limit” by three requirements: (i) the particles are moving slowly

(with respect to the speed of light), (ii) the gravitational field is weak (can be considered a

perturbation of flat space), and (iii) the field is also static (unchanging with time). Let us

see what these assumptions do to the geodesic equation (of a massive particle). “Moving

slowly” means that
dxi

dτ
<<

cdt

dτ
, (40)

so the geodesic equation (Equation 37) becomes

d2xµ

dτ 2
+ Γµ

00

(

cdt

dτ

)2

= 0 . (41)

Since the field is static, all time derivatives of gµν vanish, and the relevant Christoffel symbols

Γµ
00

simplify:

Γµ
00

= 1

2
gµλ(∂0gλ0 + ∂0g0λ − ∂λg00)

= −1

2
gµλ∂λg00 .

(42)

(Note that we used the notation ∂µgλσ ≡ ∂gλσ/∂x
µ, see SR, Equation 46). Finally, the

weakness of the gravitational field allows us to decompose the metric into the Minkowski

form plus a small perturbation:

gµν = ηµν + hµν , |hµν | << 1 . (43)

(We are working in Cartesian coordinates, so ηµν is the canonical form of the metric. The

“smallness condition” on the metric perturbation hµν doesn’t really make sense in other

coordinates.) From the definition of the inverse metric, gµνgνσ = δµσ , we find that to first

order in h,

gµν = ηµν − hµν , (44)

where hµν = ηµρηνσhρσ. In fact, we can use the Minkowski metric to raise and lower indices

on an object of any definite order in h, since the corrections would only contribute at higher

orders.

Putting it all together, we find

Γµ
00

= −
1

2
ηµλ∂λh00 . (45)
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The geodesic equation (37) is therefore

d2xµ

dτ 2
=

1

2
ηµλ∂λh00

(

cdt

dτ

)2

. (46)

Using ∂0h00 = 0 (stationary gravitational field), the µ = 0 component of this is just

d2t

dτ 2
= 0 . (47)

That is, dt
dτ

is constant. To examine the spacelike components of Equation 46, recall that the

spacelike components of ηµν are just those of a 3× 3 identity matrix. We therefore have

d2xi

dτ 2
=

1

2

(

cdt

dτ

)2

∂ih00 . (48)

Dividing both sides by
(

cdt
dτ

)2

has the effect of converting the derivative on the left-hand side

from τ to t, leaving us with
d2xi

c2dt2
=

1

2
∂ih00 . (49)

This begins to look like recovering Newton’s theory of gravitation. In fact, we can identify

h00 = −
2Φ

c2
, (50)

to get the familiar result
d2xi

dt2
= −∂iΦ. (51)

In other words, we got

g00 = −

(

1 +
2Φ

c2

)

. (52)

Therefore, we have shown that the curvature of spacetime is indeed sufficient to describe

gravity in the Newtonian limit, as long as the metric takes the form of Equation 50.

We still need to find field equations for the metric which imply that this is the form

taken, and that for a single gravitating body we recover the Newtonian formula

Φ = −
GM

r
. (53)

This will be done shortly.
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