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1. Introduction: linearized gravity

There are many similarities between gravitation and electromagnetism. It is therefore

of no surprise that Einstein’s equations, like Maxwell’s equations, have radiative solution.

When we derived Einstein’s equations, we considered the Newtonian limit as a guideline.

In this limit, we argued that the gravitational field be weak, that it be static (no time

derivatives), and that test particles be moving slowly (See “Equivalence”, section 6).

Here we consider a less restrictive situation, in which the field is still weak but it can vary

with time, and there are no restrictions on the motion of test particles. This will allow us

to discuss phenomena which are absent or ambiguous in the Newtonian theory, specifically

as gravitational radiation - where the field varies with time.

We start as usual, by decomposing the metric into the flat Minkowski metric plus a

small perturbation,

gµν = ηµν + hµν , |hµν | << 1 . (1)

We restrict ourselves to coordinates in which ηµν takes its canonical form, ηµν = diag(−1,+1,+1,+1).

The assumption that hµν is small allows us to ignore anything that is higher than first order

in this quantity, from which we immediately obtain

gµν = ηµν − hµν , (2)

where hµν = ηµρηνσhρσ. As before, we can raise and lower indices using ηµν and ηµν , since

the corrections would be of higher order in the perturbation.

We want to find the equation of motion obeyed by the perturbations hµν , which come

by examining Einstein’s equations to first order. We begin with the Christoffel symbols,

which are given by
Γρ
µν = 1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν)

= 1
2
ηρλ(∂µhνλ + ∂νhλµ − ∂λhµν) .

(3)
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Since the connection coefficients are first order quantities, the only contribution to the Rie-

mann tensor comes from the derivatives of the Γ’s, not the Γ2 terms. Lowering an index for

convenience, and using µ → ν, ν → σ, ρ → λ, λ → α, we obtain

Rµνρσ = ηµλ∂ρΓ
λ
νσ − ηµλ∂σΓ

λ
νρ

= 1
2
(∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ) .

(4)

The Ricci tensor comes from contracting over µ and ρ (using ν → µ, σ → ν), giving

Rµν =
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−✷hµν) , (5)

which is manifestly symmetric in µ and ν. In this expression we have defined the trace of

the perturbation as h = ηµνhµν = hµ
µ, and the D’Alembertian is simply the one from flat

space, ✷ = ∇µ∇µ = −∂2
t + ∂2

x + ∂2
y + ∂2

z . Contracting again we obtain the Ricci scalar,

R = ∂µ∂νh
µν −✷h . (6)

Putting it all together, the Einstein tensor gets the form:

Gµν = Rµν − 1
2
ηµνR

= 1
2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−✷hµν − ηµν∂ρ∂σh

ρσ + ηµν✷h) .
(7)

The linearized field equation is Gµν = 8πGTµν , where Gµν is given by Equation 7 and

Tµν is the energy-momentum tensor, calculated to zeroth order in hµν (the weak field limit

implies that we can neglect higher order terms). Here we focus on the vacuum equations,

which as usual are just Rµν = 0, where Rµν is given by Equation 5.

1.1. Choice of gauge: the harmonic gauge

The linearized field equation, Gµν = 8πGTµν , where Gµν is given by Equation 7, does not

yield a unique solution. Given any solution (namely, hµν), we can always generate another

solution, hµ′ν′ by performing a coordinate transformation. Let us show that first. The most

general coordinate transformation that leaves the field weak is of the form

xµ → xµ′ = xµ + ǫµ(x) (8)

where ∂ǫµ/∂xν is at most of the same order of magnitude as hµν .

The metric in the new coordinate system is

gµ
′ν′ =

∂xµ′

∂xλ

∂xν ′

∂xρ
gλρ, (9)
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and using gµν ≃ ηµν − hµν , we can write

hµ′ν′ = hµν − ∂ǫµ

∂xλ
ηλν − ∂ǫν

∂xρ
ηρµ. (10)

Thus, if hµν is a solution to the linearized field equation, so will be

hµ′ν′ = hµν −
∂ǫµ
∂xν

− ∂ǫν
∂xµ

. (11)

Note that all 4 ǫµ ≡ ǫνηµν are small but arbitrary functions of xµ. The fact that the solution

is not unique is called gauge invariance of the field equation. The transformation in

Equation 11 is known as gauge transformation. It is analogue to gauge transformation

familiar from E&M.

When facing a system that is invariant under some kind of gauge transformations, the

natural approach is to fix a gauge. A commonly used gauge is the harmonic gauge,

✷xµ = 0 . (12)

Here ✷ = ∇µ∇µ is the covariant D’Alembertian. It is crucial to note that each coordinate

xµ is thought of as a scalar function of spacetime. Any function that satisfies ✷f = 0 is

known as an “harmonic function”.

By writing directly the covariant derivatives, the condition in Equation 12 can be written

as
0 = ✷xµ

= gρσ
(
∂ρ∂σx

µ − Γλ
ρσ∂λx

µ
)

= gρσ
(
∂ρδ

µ
σ − Γλ

ρσδ
µ
λ

)

= −gρσΓµ
ρσ .

(13)

The condition gρσΓρ
ρσ = 0 is also known as the Lorentz gauge but also as Einstein gauge.

In the weak field limit (Equation 3), Equation 13 gets the form

1

2
ηµνηλρ(∂µhνλ + ∂νhλµ − ∂λhµν) = 0 , (14)

or

∂µh
µ
λ −

1

2
∂λh = 0 . (15)

In this gauge, the linearized Einstein equations Gµν = 8πGTµν (where Gµν is given in

Equation 7) simplifies,

✷hµν −
1

2
ηµν✷h = −16πGTµν , (16)
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while the vacuum equations Rµν = 0 (Equaiton 5) take on the elegant form

✷hµν = 0 , (17)

which is simply the conventional relativistic wave equation. In deriving equations 16, 17, the

first three terms in Equations 5, 7 cancel by the Lorentz gauge, and the 5th term in Equation

7 simplifies by that gauge.

Together, Equations 17 and 15 determine the evolution of a disturbance in the gravita-

tional field in vacuum in the harmonic gauge.

2. Gravitational wave solutions

We begin by defining the “trace-reversed” perturbation h̄µν by

h̄µν = hµν −
1

2
ηµνh . (18)

The name makes sense, since h̄µ
µ = −hµ

µ.

In terms of h̄µν the harmonic gauge condition (Equation 15) becomes

∂µh̄
µ
λ = 0 . (19)

The full field equations (16) are

✷h̄µν = −16πGTµν , (20)

from which it follows immediately that the vacuum equations are

✷h̄µν = 0 . (21)

A look at the linearized Equation 21 reveals that since the flat-space D’Alembertian has the

form ✷ = −∂2
t +∇2, the field equation is in the form of a wave equation for h̄µν .

As all good physicists know, the thing to do when faced with such an equation is to

write down complex-valued solutions, and then take the real part at the end. It is easy to

recognize that a particularly useful set of solutions to this wave equation are the plane waves,

given by

h̄µν = Cµνe
ikσxσ

, (22)

where Cµν is a constant, symmetric, (0, 2) tensor (that provides the amplitudes of the various

components of the wave), and kσ is a constant vector known as the wave vector. To check
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that it is a solution, we plug in:

0 = ✷h̄µν

= ηρσ∂ρ∂σh̄µν

= ηρσ∂ρ(ikσh̄µν)

= −ηρσkρkσh̄µν

= −kσk
σh̄µν .

(23)

Since (for an interesting solution) not all of the components of h̄µν will be zero everywhere,

we must have

kσk
σ = 0 . (24)

The plane wave in Equation 21 is therefore a solution to the linearized equations if the

wavevector is null; this is loosely translated into the statement that gravitational waves

propagate at the speed of light. The timelike component of the wave vector is the frequency

of the wave, and we write kσ = (ω, k1, k2, k3). (More generally, an observer moving with four-

velocity Uµ would observe the wave to have a frequency ω = −kµU
µ.) Then the condition

that the wave vector be null becomes

ω2 = δijk
ikj . (25)

Of course, any (possibly infinite) number of distinct plane waves can be added together

and will still solve the linear equation 21. Indeed, any solution can be written as such a

superposition.

In order to further specify the wave, we note that there are still plenty degrees of freedom.

Cµν is a symmetric, (0, 2) tensor, and as such has 10 free coefficients. The null vector kσ has

additional three coefficients. Much of this freedom is due to coordinate freedom and gauge

freedom, which we now set about eliminating.

We begin by imposing the harmonic gauge condition, Equation 19. This implies that

0 = ∂µh̄
µν

= ∂µ(C
µνeikσx

σ

)

= iCµνkµe
ikσxσ

,

(26)

which is only true if

kµC
µν = 0 . (27)

We thus find that the wave vector is orthogonal to Cµν . These are four equations, which

reduce the number of independent components of Cµν from ten to six.
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The number of independent componets of Cµν is in fact even lower. Recall that any

coordinate transformation of the form

xµ → xµ + ǫµ

(see Equation 8) will leave the harmonic coordinate condition (Equation 12)

✷xµ = 0

satisfied as long as

✷ǫµ = 0 . (28)

Equation 28 is itself a wave equation for ǫµ; Following a similar procedure to what we did

above, will impose additional 4 constraints, leaving the number of independent parameters

to 2.

Let us see how this works. We write the 4 additional constraints as

h0µ = 0 , hµ
µ = 0, (29)

from which we get (using Equations 18, 19, and 22)

∂0h̄
0
λ = C0

0ik0e
ikσxσ

= 0

∂ih̄
i
λ = C i

λikie
ikσxσ

= 0
(30)

We thus get

C00 = 0, kµCµν = 0. (31)

The last condition means that the gravitational waves are transverse - similar to electro-

magnetic waves.

We are left with two degrees of freedom - namely there are only 2 independent Cµν . The

easiest way to write them explicitly is to orient the spatial coordinates so that the direction

of propagation of the wave is along one axis (z axis). That is,

kµ = (ω, 0, 0, k3) = (ω, 0, 0, ω) , (32)

where we know that k3 = ω because the wave vector is null. In this case, the transverse

consition, kµCµν = 0 imply that all the components along the z axis vanish,

C3ν = 0 . (33)

Furthermore, we know from Equation 29 that all components C0µ = 0, and we are thereofe

left with only 4 non-zero components for the matrix Cµν : C11, C12, C21, C22. But Cµν is
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symmetric, and must be traceless since hµ
µ = 0; so the most general form of the amplitude

matrix Cµν is

Cµν =




0 0 0 0

0 C11 C12 0

0 C12 −C11 0

0 0 0 0


 . (34)

Thus, for a plane wave in this gauge travelling in the x3 direction, the two components C11

and C12 (along with the frequency ω) completely characterize the wave.

This choice of coordinates in which the transverse and traceless conditions are repre-

sented explicitly is called transverse-traceless gauge, or simply TT-gauge for short.

The most general solution to the linearized Einstein equation with definite wave number

is therefore

hµν(x) =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


 eiω(z−t). (35)

where we renamed h+ = C11 , h× = C12 from reasons which will become clear shortly.

2.1. Observational effect

To get a feeling for the physical effects due to gravitational waves, it is best to consider

the motion of test particles in the presence of a wave.

It is certainly insufficient to solve for the trajectory of a single particle, since that

would only tell us about the values of the coordinates along the world line. To obtain a

coordinate-independent measure of the wave’s effects, we consider the relative motion of

nearby particles, as described by the geodesic deviation equation (see “Curvature”, section

9). If we consider some nearby particles with four-velocities described by a single vector field

Uµ(x) and separation vector Sµ, we have

D2

Dτ 2
Sµ = Rµ

νρσU
νUρSσ . (36)

We would like to compute the right-hand side to first order in hµν . If we take the test

particles to be moving slowly then we can express the four-velocity as a unit vector in the

time direction plus corrections of order hµν and higher; but we know that the Riemann tensor

is already first order, so the corrections to Uν may be ignored, and we write

Uν = (1, 0, 0, 0) . (37)
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Therefore we only need to compute Rµ
00σ, or equivalently Rµ00σ. From Equation 4 we have

Rµ00σ =
1

2
(∂0∂0hµσ + ∂σ∂µh00 − ∂σ∂0hµ0 − ∂µ∂0hσ0) . (38)

But hµ0 = 0 (Equation 29), so

Rµ00σ =
1

2
∂0∂0hµσ . (39)

For slowly-moving particles we have τ = x0 = t to lowest order, so the geodesic deviation

equation becomes
∂2

∂t2
Sµ =

1

2
Sσ ∂2

∂t2
hµ

σ . (40)

For a wave travelling in the x3 direction, the results of Equation 35 therefore imply that

only S1 and S2 will be affected — the test particles are only disturbed in directions

perpendicular to the wave vector. This is of course familiar from electromagnetism,

where the electric and magnetic fields in a plane wave are perpendicular to the wave vector.

We consider a wave characterized by the two numbers, h+ = C11 and h× = C12. Let’s

consider their effects separately. Beginning with the h× = 0 case, we have

∂2

∂t2
S1 =

1

2
S1 ∂

2

∂t2
(h+e

ikσxσ

) (41)

and
∂2

∂t2
S2 = −1

2
S2 ∂

2

∂t2
(h+e

ikσxσ

) . (42)

These can be immediately solved to yield, to lowest order in S1, S2,

S1 =

(
1 +

1

2
h+e

ikσxσ

)
S1(0) (43)

and

S2 =

(
1− 1

2
h+e

ikσxσ

)
S2(0) . (44)

Thus, particles initially separated in the x1 direction will oscillate back and forth in the x1

direction, and likewise for those with an initial x2 separation. That is, if we start with a ring

of stationary particles in the x-y plane, as the wave passes they will bounce back and forth

in the shape of a “+”, as shown in Figure 1.

On the other hand, the equivalent analysis for the case where h+ = 0 but h× 6= 0 would

yield the solution

S1 = S1(0) +
1

2
h×e

ikσxσ

S2(0) (45)
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x

y

Fig. 1.— The effect of a gravitational wave ith a “+” polarization is to distort a circle of

test particles into ellipses oscillating in a “+” pattern.

and

S2 = S2(0) +
1

2
h×e

ikσxσ

S1(0) . (46)

In this case the circle of particles would bounce back and forth in the shape of a “×” (see

Figure 2)

x

y

Fig. 2.— The effect of a gravitational wave with × polarization is to distort a circle of test

particles into ellipses oscillating in a × pattern.

The notation h+ and h× should therefore be clear now. These two quantities measure

the two independent modes of linear polarization of the gravitational wave. One may also

consider right- and left-handed circularly polarized modes by defining

hR = 1√
2
(h+ + ih×) ,

hL = 1√
2
(h+ − ih×) .

(47)

The effect of a pure hR wave is to rotate the particles in a right-handed sense, as shown in

Figure 3.

Similarly for the left-handed mode hL. Note that the individual particles do not travel

around the ring; they just move in little epicycles.
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x

y

Fig. 3.— The effect of a gravitational wave with R polarization is to distort a circle of test

particles into an eliipse that rotates in a right-handed sense.

3. Generation of gravitational waves

We now discuss the question of generating gravitational waves. Here, we have to con-

sider Einstein’s equation in matter, Gµν = 8πGTµν . Linearizing this equation one gets (see

Equation 20)

✷h̄µν = −16πGTµν .

The solution to such an equation can be obtained using a Green’s function, in precisely the

same way as the analogous problem in electromagnetism.

The Green’s function G(xσ − yσ) for the D’Alembertian operator ✷ is (by definition)

the solution of the wave equation in the presence of a delta-function source:

✷xG(xσ − yσ) = δ(4)(xσ − yσ) , (48)

where ✷x denotes the D’Alembertian with respect to the coordinates xσ. The usefulness of

Green’s function resides in the fact that the general solution to an equation such as Equation

20 is given by

h̄µν(x
σ) = −16πG

∫
G(xσ − yσ)Tµν(y

σ) d4y , (49)

(proof is immediate; note that no factors of
√−g are necessary, since the background is

simply flat spacetime. ).

The solution to Green’s function (Equation 48) can represent “retarded” or “advanced”

waves, depending on whether the waves travel forward or backward in time. We are intrested,

of course, in retarded Green function, representing waves traveling forward in time - namely,

the accumulated effects of signals to the past of the point we are looking at. The solution of

Equation 48 is (can be found in mathematical textbook)

G(xσ − yσ) = − 1

4π|x− y|δ[|x− y| − (x0 − y0)] θ(x0 − y0) . (50)
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Here we have used boldface to denote the spatial vectors x = (x1, x2, x3) and y = (y1, y2, y3),

with norm |x− y| = [δij(x
i − yi)(xj − yj)]1/2. The theta function θ(x0 − y0) equals 1 when

x0 > y0, and zero otherwise.

Plugging the Green function (Equation 50) in Equation 49 enable to use the delta-

function to perform the integral over y0, resulting in

h̄µν(t,x) = 4G

∫
1

|x− y|Tµν(t− |x− y|,y) d3y , (51)

where t = x0. The term “retarded time” is used to refer to the quantity

tr = t− |x− y| . (52)

The interpretation of Equation 51 should be clear: the disturbance in the gravitational field

at (t,x) is a sum of the influences from the energy and momentum sources at the point

(tr,x− y) on the past light cone (see Figure 4).

t xi

y i

(t  , y  )i
r

Fig. 4.— Disturbances in the gravitational field at (t, xi) are calculated in terms of events

inside the past light cone.

Let us take this general solution and consider the case where the gravitational radiation

is emitted by an isolated source, fairly far away, comprised of nonrelativistic matter. Since

we deal with oscillatory phenomenon, it is best to use Fourier transforms.

Given a function of spacetime φ(t,x), its Fourier transform (and inverse) with respect

to time alone are given by

φ̃(ω,x) = 1√
2π

∫
dt e−iωtφ(t,x) ,

φ(t,x) = 1√
2π

∫
dω eiωtφ̃(ω,x) .

(53)
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Taking the transform of the metric perturbation, we obtain

˜̄hµν(ω,x) = 1√
2π

∫
dt e−iωth̄µν(t,x)

= 4G√
2π

∫
dt d3y e−iωt Tµν(t−|x−y|,y)

|x−y|
= 4G√

2π

∫
dtr d

3y e−iωtre−iω|x−y| Tµν(tr,y)

|x−y|

= 4G
∫
d3y e−iω|x−y| T̃µν(ω,y)

|x−y| .

(54)

Here, we got the second line by using the solution (Equation 51), the third line is a change of

variables from t to tr, and the fourth line is once again the definition of the Fourier transform.

In order to proceed, we assume that the source is isolated, far away, and slowly moving.

This means that we can consider the source to be centered at a (spatial) distance R, with

the different parts of the source at distances R + δR such that δR << R. Since it is

slowly moving, most of the radiation emitted will be at frequencies ω sufficiently low that

δR << ω−1. (Essentially, light traverses the source much faster than the components of the

source itself do.)

observer

R

Rδ
source

Fig. 5.— A source of size δR, located at distance R from the observer.

Under these approximations, the term e−iω|x−y|/|x−y| can be replaced by e−iωR/R and

brought outside the integral (see Figure 5). Equation 54 thus become

˜̄hµν(ω,x) = 4G
e−iωR

R

∫
d3y T̃µν(ω,y) . (55)

We now have to compute ˜̄hµν(ω,x). However, we can simplify things by writing the

harmonic gauge condition, ∂µh̄
µν(t,x) = 0 in Fourier space:

0 = ∂µh̄
µν(t,x) = 1√

2π
∂µ

∫
dω eiωt˜̄hµν(ω, x)

=
∫
dω eiωt

[
(iω)˜̄h0ν(ω, x) + ∂i

˜̄hiν(ω, x)
]
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or
˜̄h0ν =

i

ω
∂i
˜̄hiν . (56)

Thus, it is sufficient to calculate the spacelike components of ˜̄hµν(ω,x).

From Equation 55 we integrate over the spacelike components of T̃µν(ω,y). Integrating

by parts in reverse, we get

∫
d3y T̃ ij(ω,y) =

∫
∂k(y

iT̃ kj) d3y −
∫

yi(∂kT̃
kj) d3y . (57)

The first term on the right is a surface integral which vanishes for an isolated source. The

second can be related to T̃ 0j by the Fourier-space version of ∂µT
µν = 0,

∂kT̃
kµ = −iωT̃ 0µ . (58)

Thus, ∫
d3y T̃ ij(ω,y) = iω

∫
yiT̃ 0j d3y

= iω
2

∫
(yiT̃ 0j + yjT̃ 0i) d3y

= iω
2

∫ [
∂l(y

iyjT̃ 0l)− yiyj(∂lT̃
0l)
]
d3y

= −ω2

2

∫
yiyjT̃ 00 d3y .

(59)

The second line is justified since we know that the left hand side is symmetric in i and j,

while the third and fourth lines are simply repetitions of reverse integration by parts and

conservation of T µν .

It is therefore conventional to define the quadrupole moment tensor of the energy

density of the source,

Iij(t) =

∫
yiyjT 00(t,y) d3y , (60)

a constant tensor on each surface of constant time. In terms of the Fourier transform of the

quadrupole moment, our solution takes on the compact form

˜̄hij(ω,x) = −2Gω2 e
−iωR

R
Ĩij(ω) , (61)

or, transforming back to t,

h̄ij(t,x) = − 1√
2π

2G
R

∫
dω eiω(t−R)ω2Ĩij(ω)

= 1√
2π

2G
R

d2

dt2

∫
dω eiωtr Ĩij(ω)

= 2G
R

d2Iij(tr)

dt2
,

(62)

where as before tr = t−R.
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We thus obtained the quadrupole formula,

h̄ij(t,x) =
2G

R

d2Iij(tr)

dt2
.

The gravitational wave produced by an isolated nonrelativistic object is therefore pro-

portional to the second derivative of the quadrupole moment of the energy density at the

point where the past light cone of the observer intersects the source.

This result can be compared to the leading contribution to electromagnetic radiation,

that comes from the changing dipole moment of the charge density. The difference can be

traced back to the universal nature of gravitation. A changing dipole moment corresponds

to motion of the center of density — charge density in the case of electromagnetism, energy

density in the case of gravitation. While there is nothing to stop the center of charge of

an object from oscillating, oscillation of the center of mass of an isolated system violates

conservation of momentum. The quadrupole moment, which measures the shape of the

system, is generally smaller than the dipole moment, and for this reason (as well as the

weak coupling of matter to gravity) gravitational radiation is typically much weaker than

electromagnetic radiation.

3.1. Example

One of the most important sources of gravitational radiation is due to the motion of

binary stars - two stars in orbit around each other. For simplicity let us consider two stars

of mass M in a circular orbit in the x1-x2 plane, at distance R from their common center of

mass (see Figure 6).

In reality, it is safe to treat the motion of the stars in the Newtonian approximation,

namely Keplerian orbits. Circular orbits are most easily characterized by equating the force

due to gravity to the outward “centrifugal” force:

GM2

(2r)2
=

Mv2

r
,

which gives the velocity

v =

(
GM

4r

)1/2

. (63)

The time it takes to complete a single orbit is therefore

T =
2πr

v
. (64)
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r r
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3

Fig. 6.— A binary star system. Two stars of equal masses M orbit in the x1 − x2 plane,

with an orbital radius R.

The useful quantity is the angular frequency of the orbit,

Ω =
2π

T
=

(
GM

4r3

)1/2

. (65)

In terms of Ω we can write down the explicit path of the stars: star a,

x1
a = r cosΩt , x2

a = r sinΩt , (66)

and star b,

x1
b = −r cosΩt , x2

b = −r sinΩt . (67)

The corresponding energy density is

T 00(t,x) = Mδ(x3)
[
δ(x1 − r cosΩt)δ(x2 − r sinΩt) + δ(x1 + r cosΩt)δ(x2 + r sinΩt)

]
.

(68)

We use the δ-functions to integrate this straightforwardly, and obtain the quadrupole moment

tensor from Equation 60:

I11 = 2Mr2 cos2 Ωt = Mr2(1 + cos 2Ωt),

I22 = 2Mr2 sin2 Ωt = Mr2(1− cos 2Ωt),

I12 = I21 = 2Mr2(cosΩt)(sinΩt) = Mr2 sin 2Ωt,

Ii3 = 0 .

(69)

Using this result in the quadrupole formula (Equation 62) gives the components of the
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metric perturbation,

h̄ij(t,x) =
8GM

R
Ω2r2




− cos 2Ωtr − sin 2Ωtr 0

− sin 2Ωtr cos 2Ωtr 0

0 0 0


 . (70)

The remaining components of h̄µν could be derived from demanding that the harmonic gauge

condition be satisfied.

4. Energy loss due to gravitational radiation

Emission of gravitational waves is accompanied by energy losses. However, we need to

be careful in defining how to measure the true energy of a gravitational field. In the weak

field limit, this implies associating an energy-momentum tensor to the fluctuations hµν , in

an analogue way to electromagnetic field.

At the technical level, we have to be careful. The stress-energy tensor for the electro-

magnetic field is quadratic in the field. However, in the weak field limit, we only kept terms

that are linear in the metric perturbation. Thus, assuming that the stress-energy tensor as-

sociated with gravitational waves is also quadratic in the field (as it is), we have to extend

the calculations to (at least) second order term in hµν .

With this in mind, consider Einstein’s equation (in vacuum), Rµν = 0 to second order,

and see how the results csan be interpreted in terms of an energy-momentum tensor for the

gravitational field. We expand both the metric and the Ricci tensor,

gµν = ηµν + h
(1)
µν + h

(2)
µν ,

Rµν = R
(0)
µν +R

(1)
µν +R

(02
µν

(71)

where R
(1)
µν is taken to be of the same order as h

(1)
µν , while R

(2)
µν and h

(2)
µν are of the order(

h
(1)
µν

)2

.

The zeroth order equation, R
(0)
µν = 0 is automatically satisfied since we work in a flat

background. The dirst order equation,

R(1)
µν [h

(1)] = 0

determines the first order perturbation h
(1)
µν up to (unavoidable) gauge transformation. The

second order perturbation, h
(2)
µν is determined by the second order equation:

R(1)
µν [h

(2)] +R(2)
µν [h

(1)] = 0 (72)
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The notation R
(1)
µν [h(2)] refer to the part of the expanded Ricci tensor that is linear in the met-

ric perturbation, applied to a seocnd order perturbation; similarly, R
(2)
µν [h(1)] is the quadratic

part of the Ricci tensor applied to first order perturbation, h
(1)
µν . There are no cross terms,

as those will be of higher order. Written explicitely, the term R
(2)
µν takes the form

R
(2)
µν = 1

2
hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +

1
4
(∂µhρσ)∂νh

ρσ + (∂σhρ
ν)∂[σhρ]µ

+1
2
∂σ(h

ρσ∂ρhµν)− 1
4
(∂ρhµν)∂

ρh− (∂σh
ρσ − 1

2
∂ρh)∂(µhν)ρ .

where ∂(µhν)ρ =
1
2
(∂µhνρ + ∂νhµρ) is the symmetric part of the tensor.

The most straight forward way is to write Einstein’s equation in vacuum as Gµν = 0,

rather than Rµν = 0 - the equations are equivalent, but the first way is more insightful. We

get, to second order,

R(1)
µν [h

(2)]− 1

2
ηρσR(1)

ρσ [h
(2)]ηµν = 8πGT̃µν , (73)

where we have defined

T̃µν ≡ − 1

8πG

{
R(2)

µν [h
(1)]− 1

2
ηρσR(2)

ρσ [h
(1)]ηµν

}
(74)

This notation is of course meant to suggest that we think of T̃µν as an energy-momentum

tensor associated with the gravitational field (at least in the weak field limit regime). The

Bianchi identity ∂µG
µν = 0 further implies that T̃µν is conserved in the flat space, namely

∂µT̃
µν = 0 . (75)

Clearly, there are limitations to the interpretation of T̃µν as an energy-momentum tensor.

It is not a tensor at all in the full theory; furthermore, it is not invariant under gauge

transformations. Furtunately, it is possible to construct global quantities which are invariant

under certain special kinds of gauge transformations. These include the total energy on a

surface Σ of constant time,

E =

∫

Σ

T̃00 d3x , (76)

and the total energy radiated through to infinity,

∆E =

∫

S

P dt =

∫
dt

∫

S∞

T̃0µn
µ r2 dΩ . (77)

Here, the integral is taken over the two sphere S∞, and nµ is a unit space-like vector normal

to S∞, whose components in polar coordinates [t, r, θ, φ] are simply

nµ = (0, 1, 0, 0).
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Evaluating these formulas in terms of the quadrupole moment of a radiating source

involves a lengthy and very technical calculation, which I skip; it is provided in Caroll’s book

(chapter 7). For the rotating binary star example given in section 3.1, the total radiated

power is

P = −128

5
GM2R4Ω6 (78)

or, using equation 65 for the frequency,

P =
2

5

G4M5

R5
(79)

This energy loss through gravitational waves has actually been observed. In 1974 Hulse and

Taylor discovered a binary system, PSR1913+16, in which both stars are very small (so

classical effects are negligible, or at least under control) and one is a pulsar. The period

of the orbit is eight hours, extremely small by astrophysical standards. The fact that one

of the stars is a pulsar provides a very accurate clock, with respect to which the change in

the period as the system loses energy can be measured. The result is consistent with the

prediction of general relativity for energy loss through gravitational radiation. Hulse and

Taylor were awarded the Nobel Prize in 1993 for this discovery.
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