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1. Special relativity

In 1905, Einstein introduced the special theory of relativity. This theory was moti-

vated by the Michelson-Morley experiment: this fundamental experiment proved that

the speed of light, c is the same at any inertial reference frame. Thus, Galilean transforma-

tion of velocities between two frames, O and O′, ~u′ = ~u+ ~v (where ~v is the relative velocity

of the two frames) fails. Instead, it had to be replaces by Lorentz transformation.

The special theory of relativity has 3 great successes:

• First, it conserves the intervals, δτ 2 = δt2 − (δx/c)2, thereby it is consistent with the

results of the Michelson-Morley experiment.

• Second, Galilean transformation (and Newton’s laws), familiar from everyday life are

obtained as a limiting case in the limit v ≪ c. Thus, this theory can be viewed as an

extension of the Newtonian theory known from the 17th century.

• Third, it is consistent with Maxwell’s theory of electromagnetism. Maxwell’s equation

are invariant under Lorentz transformation, and they admit a wave solution, traveling

at the speed of light.

However, the special theory of relativity fails to explain two issues: First, it does not

explain the nature of inertial frames. Second, it does not explain gravity: According to

Newton’s view, the gravitational force between two bodies, Gm1m2/r
2 acts simultaneously

on both bodies; this is in contradiction with the idea that no signal can move faster than

light.

Following the invention of special relativity, Einstein tried for several years to invent

a Lorentz invariant theory of gravity, without success. His breakthrough eventually came

when he replaced the flat Minkowski space time with a curved space-time, thereby providing

a geometrical interpretation to gravity.
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2. The principle of relativity and Mach’s principle

In Newtonian mechanics there is a unique set of reference frames, known as inertial

reference frames, within which Newton’s first law of motion hold (“if no net force acts

on a body it will move in straight line at constant velocity, or will stay at rest if initially

at rest”). This is opposed to non-inertial frames (e.g., rotating frames), in which Newton’s

laws take a different form: in non-inertial frames, fictitious forces, that arise not from any

physical interaction but from the acceleration of the non-inertial frame itself exist (e.g., the

centrifugal force).

Similarly, inertial frames are particularly important in special relativity, due to the prin-

ciple of relativity which states that identical experiments carried in different inertial

frames give identical results.

A question arises: what determines which reference frames are inertial frames ? New-

ton’s answer was that there must exist an absolute space, and that the inertial frames are

those at rest (or in uniform motion) with respect to that absolute space.

Fig. 1.— Newton’s bucket experiment. (1) The bucket rotates, but the water remain still.

(2) After a while, the water rotates as well, their surface gets a concave shape. (3) The

bucket stops rotating, the water are still rotating and their surface is still concave. (4) The

water are at rest. Newton considered this as a prove of the existence of absolute space.

In order to demonstrate his argument, Newton gave the known “rotating bucket” exam-

ple (see Figure 1): consider a bucket full of water, hanged by a cord. If the cord is twisted

up tightly on itself and then the bucket is released, it begins to spin rapidly, not only with

respect to the experimenter, but also in relation to the water it contains. However, at this

point, the water are not rotating, and their surface is flat. Eventually, the surface of the

water assumes a concave shape, as they acquire the motion of the spinning bucket. This

concave shape shows that the water is rotating, although at this stage they are at rest with
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respect to the bucket. Thus, the concave shape of the water imply that they rotate relative to

something else, which Newton’s interpreted as absolute space. The motion is thus absolute,

not relative.

However, Ernst Mach had a different interpretation of these results: “Newton’s exper-

iment with the rotating vessel of water simply informs us that the relative rotation of the

water with respect to the sides of the vessel produces no noticeable centrifugal forces, but that

such forces are produced by its relative rotations with respect to the mass of the earth and

other celestial bodies.”

Thus, Mach hypothesis was that there is some influence of “the mass of earth and other

celestial bodies” which determines the inertial frame. This is known as Mach’s principle.

In other words: Mach claimed that it is the interaction with the mass of the environment

(e.g., galaxies) that determines the inertia. Inertia is thus determined relative to the large

scale mass distribution of the universe, rather than relative to some “absolute” space, as

claimed by Newton.

This is thus a conceptual difference: Newton believed that inertial forces arise as a result

of acceleration with respect to an absolute space, while Mach argued that these forces are

caused by acceleration with respect to the mass of celestial bodies. Interestingly, Einstein’s

solution took part of both approaches: Einstein showed that inertial frames are determined

by local gravitational field (similar to Mach’s approach). However, once in an inertial frame,

the laws of motion are completely unaffected by the presence of nearby masses (similar to

Newton’s idea).

3. Equivalence of inertial and gravitational mass and the equivalence principle

Already Newton noted that the inertial mass that appears in his second law of motion,
~F = mI~a is not necessarily equivalent to the gravitational mass that appears in the laws

of gravity, ~F = −GMmgr̂/r
2 (can also be written as ~F = mG~g).

If the ratio mI/mg 6= 1 for different bodies, it would imply different acceleration for

different bodies in a gravitational field. Already Newton tested whether mI = mG. Notable

experiments by Eötvös showed that

mI = mG, (1)

to a great accuracy, better than 10−11 (with modern day technology); see Figure 2.

The equivalence between inertial mass and gravitational mass led Einstein to suggest

the principle of equivalence, which states that
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Fig. 2.— Schematic view of Eötvös experiment (left). Two weights (of different materials)

are hanged at the end of a beam suspended by a wire at the center. The masses are in

equilibrium with the forces of gravity, centripetal acceleration due to the earth’s rotation

and the tension in the wire. If mI/mG 6= 1, the ratio F1/F2 would differ than the ratio

G1/G2, and the rod would rotate. This rotation would be detected by a beam of light

reflected from the mirror. Right: The direction of the centrifugal force in relation to gravity

in Budapest latitude, where Eötvös carried his experiment.

At every point in arbitrary gravitational field, it is possible to choose a
“locally inertial” coordinate system, such that (within a sufficiently small re-
gion of that point) the laws of nature take the same form as in unaccelerated
Cartesian coordinate system.

The equivalence principle implies that free-fall and inertial motion are physically equiva-

lent. Thus, an observer in a free-falling lift has no experimental way to determine the gravity

of earth. Alternatively, an observer in a windowless room cannot distinguish between being

on the surface of the Earth and being in a spaceship in deep space accelerating at 1g (to

first order).

Using this principle, one can determine the effect of gravitation on arbitrary physical

system, but it does not determine the equations for gravity itself. Essentially, Einstein

realized that the solution is to identify gravitational field with the component of the metric
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tensor of Riemannian space-time geometry. The principle of equivalence is incorporated

into this formalism through the requirement that the physical equations are invariant under

general coordinate transformations, not only Lorentz transformations.

4. Riemannian geometry

The Greek mathematician Euclid showed that geometry can be deduced from a few

definitions, axioms and postulates. In particular, Euclid’s 5th postulate (the parallel postu-

late) states that: ”if a straight line falling on two straight lines make the interior angles on

the same side less than two right angles, the two straight lines, if produced indefinitely, meet

on that side on which are the angles less than the two right angles.”

This can be shown to be equivalent to the statement that “the sum of angles in a

triangle is 180◦” (Legendre). However, by the late 18th century - early 19th century, it

became clear that one can think of geometries which are very similar to Euclidean geometry

in many aspects, but do not fulfill Euclid’s 5th postulate. An example of such a geometry is

a triangle drawn on a sphere, see Figure 3. These geometries are known as non-Euclidean

geometries. The sphere example is also called two dimensional space with constant positive

curvature. In fact, when we discuss cosmology, we will see that the space in which we actually

live in may be a three-dimensional space of constant curvature.

Fig. 3.— On a sphere, the sum of angles of a triangle is always larger than 180◦. This

is because the surface of a sphere is not a Euclidean space. However, locally the laws of

Euclidean geometry are good approximation.
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It was the great mathematician Carl Friedrich Gauss who studied the properties on non-

Euclidean spaces, that discriminated between the inner properties of a surface, and outer

properties. The inner properties are the properties as measured by a tiny bug living on

that surface, while the outer properties are the properties embedded in a higher-dimensional

space (e.g., the surface of the earth is 2-dimensional embedded in a 3-d space).

Gauss realized that an essential inner property of any surface is a function called the

metric, d = d(x, y), which gives the distance between points x and y along the shortest

possible path on the surface. For example a cone or a cylinder have the same inner properties

as a plane, since a plane can be rolled into a cone or a cylinder without stretching or

tearing. However, a sphere cannot be unrolled into a plane surface without distortion -

as any cartographer know !. Therefore, its local inner properties are not the same as the

plane’s. Gauss was able to show that the metric function (and its derivatives) are sufficient

to determine the inner properties of the space.

It was Gauss’s student, Bernhard Riemann that further generalized the concepts of

non-Euclidean geometry. Riemannian geometry generalizes Euclidean geometry to spaces

that are not necessarily flat, although they still resemble the Euclidean space at each point

infinitesimally, i.e. in the first order of approximation. Various concepts based on length,

such as the arc length of curves, area of plane regions, and volume of solids all possess natural

analogies in Riemannian geometry. The notion of a directional derivative of a function from

multi-variable calculus is extended in Riemannian geometry to the notion of a covariant

derivative of a tensor.

5. General relativity

Using the equivalent principle, Einstein was able to show that the addition of a gravita-

tional field to an otherwise empty space can be viewed as modifying the inner properties of

an otherwise flat space-time, making it curved in a similar way to a Riemannian space-time

geometry.

In this course, we begin by reviewing physics in a flat space-time: the Minkowski space,

known from special relativity. The construction, though, will be done in a way that will

enable to generalize the equations to curved space time. We will then study the properties

of curved space-time, and show how the laws of physics are written in such a curved space-

time.

We will later see how gravity act to curve the space time, by deriving the Einstein’s

field equation. We will discuss one particular solution to Einstein’s equation - that is
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Schwarzschield metric, which describes singularity (also known as black hole). We will

discuss the paths of particles in such a geometry.

In the final part of this course, we will discuss the structure and evolution of the uni-

verse on the largest scale - a branch of science known as cosmology. We will discuss the

appropriate metric that describes the universe, known as Friedmann-Robertson-Walker

(FRW) metric, and its observational consequences.


