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1. Introduction

We begin by a review of special theory of relativity. The two goals are (1) to remind

the basics of special relativity (SR), and (2) to introduce vectors and tensors, which are

going to be crucial later on - without the complexity of curved space time. I strongly urge

the students to read my lecture notes on special relativity for first year mechanics course

(PY1052), that can be found on my webpage. This is essentially similar to what will be

discussed here, but using much less confusing terms.

The principle of special relativity states that the laws of nature are invariant in

all inertial reference frames. The experimental basis of this theory is the Michelson-

Morley experiment, which shows that the speed of light is constant and equals to c in

every inertial frame. This result is in contradiction to the Galilean transformation law of

velocities, ~V ′ = ~V + ~u, where ~V is the velocity of an object as seen by an observer in the

frame O, ~V ′ is its velocity in frame O′, and ~u is the relative velocity between frames O and

O′ (you can think of one observer - in frame O being on a platform, while the second, in

frame O′ being in a moving train).

Consider two observers, denoted by O and O′. Assume that the observer O′ is moving

(at constant velocity) with respect to the observer O, so that both frames are inertial. We

denote by x, y, z, t the (space-time) coordinate system of observer O, and by x′, y′, z′, t′ the

coordinate system of observer O′. We further assume that the coordinate origins, O and O′

coincide at t = t′ = 0.

Consider a light source located at the origin in the frame O that emits light at t = 0.

At time t, the spherical wave front of the light is at location

x2 + y2 + z2 = c2t2. (1)

A similar analysis holds for the observer O′, thus

x′2 + y′2 + z′2 = c2t′2. (2)

1Physics Dep., University College Cork



– 2 –

We can assume (without loss of generality), that O′ moves with respect to O in the x̂

direction. Thus, x′ 6= x, while y′ = y and z′ = z. Equations 1, 2 thus imply that t 6= t′.

Thus, time separation is not the same in both frames. In other words, time is not an

invariant quantity.

While the time separation between two events (e.g.: emission of photon and detection

of the photon) is not invariant, Equations 1 and 2 imply that one can define an invariant

quantity, which is called the interval between two events. The interval is defined by

(interval)2 = (∆s)2 ≡ −(c∆t)2 + (∆r)2 = −c2(∆t2) +
(

(∆x)2 + (∆y)2 + (∆z)2
)

, (3)

where ∆t is the time interval between two events, and ∆r is the space interval between the

same events.

Note that there is a very close analogy between the interval and the concept of distance

familiar in 2 (or 3)-dimensional Euclidean space. In 2-dimensional space (see Figure 1), one

can define the Cartesian coordinate system to be x, y. The distance between two points is

given by (∆s)2 = (∆x)2 + (∆y)2. Consider now a different (Cartesian) coordinate system,

defined by x′, y′ axes rotated with respect to the originals. The formula for the distance in

this new coordinate system is unchanged, (∆s)2 = (∆x′)2 + (∆y′)2. We thus say that the

distance is invariant under rotation of the coordinate system.
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Fig. 1.— The distance ∆s between two points in 2-dimensional Euclidean space is invariant

under rotation of the coordinate system.



– 3 –

2. Lorentz transformations

The interval introduced above connects the space and time into a 4-dimensional space-

time, known as Minkowski space. In this space, one can define an event by its time and

space coordinates, uniquely determined by (t, x, y, z). Note that 4 quantities are required to

fully determine the space-time location of every event. It is more convenient (yet, confusing !)

to denote coordinates on 4-dimensional space-time by letters with Greek superscript indices

running from 0 to 3, with 0 generally denoting the time coordinate. Thus any event is defined

by a 4 vector of coordinates

xµ :

x0 = ct

x1 = x

x2 = y

x3 = z

. (4)

If we need to refer to space coordinates only, we will use Latin superscripts to stand for the

space components alone:

xi :

x1 = x

x2 = y

x3 = z

(5)

Before we proceed, it is also convenient to write the spacetime interval in a more compact

form. We introduce a 4 × 4 matrix, known as the metric, which we write using two lower

indices:

ηµν =









−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









. (6)

(Some references, especially field theory books, define the metric with the opposite sign, so

be careful.) Using this new notation, we can write the interval (Equation 3) in a compact

form,

(∆s)2 =
∑

µν=0...3

ηµν∆x
µ∆xν = ηµν∆x

µ∆xν . (7)

In the last equality we used the Einstein summation convention, according to which

indices which appear both as superscripts and subscripts are summed over. We will use this

convention from here on. If you find it confusing, simply add the summation sign at the

beginning of the equation. Equation 7 is thus identical to Equation 3, simply written in a

more compact form.

A Lorentz transformation can now be defined as a transformation from one coordi-

nate system to another, that conserves the interval. One example of such a transformation
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is translation, which is a shift of the coordinates by constants:

xµ → xµ
′

= xµ + aµ , (8)

where aµ is a set of four fixed numbers. (Notice that we put the prime on the index, not on the

x: because in our notation, for example, y′ ≡ (x2)′.) Thus, translations leave the difference

∆xµ unchanged, so clearly the interval is unchanged. Note that translations represent a

simple shift in the coordinates origin.

The only other kind of linear transformation is to multiply the 4-vector xµ by a (spacetime-

independent, 4× 4) matrix:

xµ
′

= Λµ′

νx
ν . (9)

Equation 9 can be written in a longer form,

xµ
′

= Λµ′

0x
0 + Λµ′

1x
1 + Λµ′

2x
2 + Λµ′

3x
3 (10)

or, in more conventional matrix notation,

x′ = Λx . (11)

Let us see what conditions should the elements of the matrix Λ fulfill in order to conserve

the interval:
(∆s′)2 = ηµ′ν′∆x

µ′

∆xν
′

= ηµ′ν′Λ
µ′

ρ∆x
ρΛν′

σ∆x
σ

!
= ηρσ∆x

ρ∆xσ = (∆s)2
(12)

In deriving Equation 12, please note the following:

• We used the summation convention to sum over all indices that appear both as super-

scripts and subscripts. These indices are thus dummy indices. While we operate a

multiplication between matrix and vectors, since we make the multiplication one term

at a time, we are allowed to switch the order of the elements in the transition between

the 2nd and 3rd line.

• The symbol
!
= implies “we require this equality”.

The interval is thus conserved (i.e., Equation 12 is fulfilled) if the elements of the matrix Λ

fulfill

ηρσ = Λµ′

ρΛ
ν′
σηµ′ν′ . (13)
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The matrices which satisfy Equation 13 are known as the Lorentz transformations;

the set of them forms a group under matrix multiplication, known as the Lorentz group.

There is a close analogy between this group and O(3), the rotation group in three-dimensional

space.

Lorentz transformations fall into a number of categories. First there are the conventional

rotations. One such example is a rotation in the x-y plane:

Λµ′

ν =









1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1









. (14)

The rotation angle θ is a periodic variable with period 2π. By direct summation, it is easy

to show that Equation 13 is fulfilled. For example, if we choose ρ = 1, σ = 1, we can write

the only non-zero components of the summation over µ′, ν ′ as

1 = η11 = Λµ′

1Λ
ν′
1ηµ′ν′ = Λ1

1Λ
1
1η11 + Λ2

1Λ
2
1η22 = cos2 θ + sin2 θ, (15)

and similarly for every choice of ρ, σ (total 16 choices = 16 equations !). This is really

identical to rotations in 3-d Euclidean space, which conserves the distance.

Another group of transformations are called boosts, which may be thought of as “ro-

tations between space and time directions.” As an example, consider a rotation in the t-x

coordinates,

Λµ′

ν =









coshφ − sinhφ 0 0

− sinhφ coshφ 0 0

0 0 1 0

0 0 0 1









. (16)

While the format of a boost transformation is very similar to the format of Equation 14,

since the time coordinate comes with a minus (-) sign, we replace (sin) and (cos) with (sinh)

and (cosh) and changed the sign of the (t, x) component. The boost parameter φ, unlike the

rotation angle, is defined from −∞ to ∞. Again, by direct substitution it is easy to show

that the boost matrices fulfill the condition in Equation 13. For example, if ρ = 1, σ = 1 we

find

1 = η11 = Λµ′

1Λ
ν′
1ηµ′ν′ = Λ0

1Λ
0
1η00 + Λ1

1Λ
1
1η11 = − sinh2 φ+ cosh2 φ, (17)

which is an algebraic identity.

Additional transformations include discrete transformations which reverse the time di-

rection or one or more of the spatial directions. A general transformation can be obtained

by multiplying the individual transformations; the explicit expression for this six-parameter
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matrix (three boosts, three rotations) is not sufficiently pretty or useful to bother writing

down. In general Lorentz transformations will not commute, so the Lorentz group is called

non-abelian (similar to rotations !). The set of both translations and Lorentz transforma-

tions is a ten-parameter non-abelian group, known in mathematics as the Poincaré group.

Equation 16 can be put in a more familiar form by multiplying the Lorentz boost Λµ′

ν

with the four-vector xν and writing the result explicitly,

ct′ = ct coshφ− x sinhφ

x′ = −ct sinhφ+ x coshφ .
(18)

One thus find that the velocity of the point for which x′ = 0 is

β ≡ v

c
=
x

ct
=

sinhφ

coshφ
= tanhφ . (19)

Using the algebraic identities 1 − tanh2 φ = (cosh2 φ)−1 and sinh2 φ = cosh2 φ − 1, one can

write coshφ = (1− tanh2 φ)−1/2 = (1−β2)−1/2 ≡ γ, and sinhφ = (γ2−1)1/2 = γβ. Equation

18 takes the familiar form,
ct′ = γ(ct− βx)

x′ = γ(x− βct)
(20)

This seemingly very abstract approach thus retrieves the same familiar results, although in

a much more general form.

2.1. Time dilation

Consider an observer in frame O at rest, holding a clock. In her frame, two ticks of the

clock are separated by ∆x = ∆y = ∆z = 0, and ∆t = dt, where dt is the nominal period

between two ticks intended by the manufacturer. This is known as the proper time, often

denoted by dτ . In fact, according to our definition of the interval in Equation 3, we can

define

(∆τ)2 ≡ −(∆s)2

c2
= − 1

c2
ηµν∆x

µ∆xν . (21)

A second observer, O′, sees the same clock moving at velocity ~v. He will observe the

two ticks separated by a time interval ∆t′ and space interval ∆~x′ = ~v∆t′. Thus, he will see

the proper time

∆τ ′ =

(

∆t′2 − ∆x′2

c2

)1/2

= (1− β2)1/2∆t′. (22)

Assuming both observers are at inertial coordinate systems, their coordinate systems are

related via Lorentz transformations, and thus the interval ∆S hence the proper time ∆τ are
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invariant, ∆τ = ∆τ ′. Thus, the observer at O′, that sees the clock in motion, sees it ticking

with a period

∆t′ = (1− β2)−1/2∆t = γdt. (23)

3. Vectors and Tensors (part I)

Before we can proceed to discuss physics on Minkowski space-time, we need to get a

more precise definition of the concept of vectors and tensors. While we do need to develop

the full formalism before we can fully discuss the general theory of relativity, we will focus in

this section only on the basic definitions needed for working in flat space-time. However, we

will do it in a general way so that the extension to GR , which will be done in the following

chapters, will be a natural one.

3.1. Four vectors

We are used to think of vectors as directed line segments in (3-d) Euclidean space. Of

course, in four-dimensional space-time the vectors must be four-dimensional, and are thus

referred to as four-vectors. We will keep this terminology at every point where there may

be a confusion between four-vectors and “regular” 3-d vectors.

In §2 above, we have already used the concept of four-vector by introducing the space-

time coordinates (ct, x, y, z) ≡ xµ. As we saw, the coordinate four-vector xµ transforms

under Lorentz transformation according to Equation 9. We can in fact use Equation 9 to

define a four-vector, as any quantity whose components undergo the transformation

V α → V α′

= Λα′

βV
β , (24)

when the coordinate system is transformed by

xα → xα
′

= Λα′

βx
β . (25)

In fact, V α is called contra-variant four-vector, from reasons which will be discussed

shortly.

Beyond the simple fact of dimensionality, the most important thing to emphasize is

that each vector is located at a given (single) point in spacetime. This fact is going

to turn out crucial when dealing with non-flat (curved) space-time, where the concept of

“direction” is not easily defined. You may be used to thinking of vectors as stretching from
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one point to another in space, possibly even of “free” vectors which you can slide carelessly

from point to point. These are not useful concepts in relativity.

Rather, to each point p in spacetime we associate the set of all possible vectors located

at that point; this set is known as the tangent space at p, or Tp. Consider a point p in

a curved space-time (see Figure 2). We can think of the set of all vectors attached to that

point as comprising a plane which is tangent to the point (hence the name “tangent space”).

The important thing here is to remember that although we draw vectors as arrows (and will

continue to do so), all these vectors are attached to a single point, p.

p

manifold 

    M

Tp

Fig. 2.— At every point p in four-dimensions space-time there is a set of (contra-variant)

vectors, defined by Equation 24. The set of all these vectors form a tangent vector space,

Tp.

As every point p in space-time, we can thus construct a tangent space Tp, which can be

thought of as an abstract vector space. This concept should be familiar to you from linear

algebra course. Roughly speaking, a vector space is a collection of objects (vectors) which

can be added together and be multiplied by scalars (real numbers) in a linear way. Thus,

for any two vectors V and W and real numbers a and b, we have

(a+ b)(V +W ) = aV + bV + aW + bW . (26)

Every vector space has an origin, i.e. a zero vector which functions as an identity element un-

der vector addition (V +0 = V ). In many vector spaces there are additional operations such
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as taking an inner (dot) product, but this is extra structure over and above the elementary

concept of a vector space.

3.2. Basis four-vector and components

It is often useful to decompose vectors into components with respect to some set of basis

vectors. A basis is any set of vectors which both:

• spans the vector space (any vector is a linear combination of basis vectors) and

• is linearly independent (no vector in the basis is a linear combination of other basis

vectors).

For any given vector space, there will be an infinite number of legitimate bases, but each

basis will consist of the same number of vectors, known as the dimension of the space. (For a

tangent space associated with a point in Minkowski space, the dimension is of course four.)

Note also that a vector is perfectly defined by itself, regardless of its decomposition

into components with respect to any arbitrary basis we may choose; the use of

basis vectors simply turns out to be very useful (you can think of the distance ∆s presented

in Figure 1 as an example - while its components ∆x and ∆y depend on the basis vectors,

the distance itself is not).

Consider again a tangent space Tp at a point p. We can set up a basis of four vectors

ê(µ), with µ = {ct, x, y, z} or equivalently µ = {0, 1, 2, 3} (in a more precise format, we write

µ ∈ {0, 1, 2, 3}). For simplicity, we take the basis vectors to be aligned with the normal

coordinates, xµ. Thus, we take the basis vector ê(1) along the x-direction, etc. Note the

subtlety of notation: ê(µ) represent four different (basis) vecotrs, not the four components

of a single vector !. Hence the parenthesis in ê(µ).

By definition, any vector A can be written as a linear combination of basis vectors:

A = Aµê(µ) =

(

3
∑

µ=0

Aµê(µ)

)

(27)

the coefficients Aµ are the components of the vector A in the basis ê(µ); clearly, in a different

basis the same vector A will have different components (see again Figure 1). When the basis

is changed, the transformation law of the components are given by Equation 24.

Example. A standard example of a vector in spacetime is the tangent vector to a

curve (see Figure 2). Consider a general curve (or path) through space time. This curve
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is specified by the coordinates as a function of a free parameter, e.g. xµ(λ). The tangent

vector V (λ) has components

V µ =
dxµ

dλ
. (28)

The entire vector is thus V = V µê(µ). Under a Lorentz transformation the coordinates xµ

change according to Equation 9 (or 25), while the parameterization λ is unaltered; thus the

coordinates of the vector must change according to Equation 24.

Before proceeding, let us pay a careful attention to a very delicate point. In §2 above, we
introduced the four-vector of coordinates label by upper indices (Equation 4), which trans-

formed in a certain way under Lorentz transformations (Equation 9). Here, we introduced

a general four vector, whose elements transform in exactly the same way under Lorentz

transformation (Equations 24, 25). We thus wrote its components with upper indices as

well. However, as we wanted to use the summation rule, we wrote the basis vectors ê(µ),

associated with a certain coordinate system that we chose with lower indices. This notation

ensured that the invariant object constructed by summing over the components and basis

vectors was left unchanged by the transformation, just as we would wish (see again Figure

1). The transformation law of the basis vectors thus can not be the same as those of the

vector components.

Note again the subtlety: when discussing the “transformation of basis vectors” we mean

transforming from one set of basis vectors to another set composed of (four) different vectors;

while when we talk about “transformation law of vector component”, we refer to the same

vector as is being described from a different basis.

3.3. Transformation law of the basis vectors

Consider a vector V , whose components in a given basis ê(µ) are V µ, namely V =
∑3

µ=0 V
µê(µ). The vector itself (as opposed to its components in some coordinate system)

being an abstract geometrical entity is invariant under Lorentz transformations. We can use

this fact to derive the transformation properties of the basis vectors.

Let us refer to the set of basis vectors in the transformed coordinate system as ê(ν′).

Since the vector is invariant, we have

V = V µê(µ) = V ν′ ê(ν′)
= Λν′

µV
µê(ν′) .

(29)

But this relation must hold no matter what the numerical values of the components V µ are.
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Therefore we can say

ê(µ) = Λν′
µê(ν′) . (30)

To get the new basis ê(ν′) in terms of the old one ê(µ) we should multiply by the inverse

of the Lorentz transformation Λν′
µ. But the inverse of a Lorentz transformation from the

unprimed to the primed coordinates is also a Lorentz transformation, this time from the

primed to the unprimed systems. We will therefore introduce a somewhat subtle notation,

by writing using the same symbol for both matrices, just with primed and unprimed indices

adjusted. That is,

(Λ−1)ν
′

µ = Λν′
µ , (31)

so that we can write the transformation rule for basis vectors:

ê(ν′) = Λν′
µê(µ) . (32)

Therefore the set of basis vectors transforms via the inverse Lorentz transformation of the

coordinates or vector components.

Equation 31 can also be written as

Λν′
µΛσ′

µ = δσ
′

ν′ , Λν′
µΛν′

ρ = δµρ , (33)

where δµρ is the traditional Kronecker delta symbol in four dimensions. (Note that Schutz uses

a different convention, always arranging the two indices northwest/southeast; the important

thing is where the primes go.)

This explains the origin of the term “contra-variant” vector; the transformation law of

the components of a contra-variant vector are opposite (contra) to the transformation law

of the basis vectors.

3.4. Covariant vectors and the dual space

We have seen that the transformation law of the components of a contra-variant vector is

different than the transformation law of the basis vectors associated with a given coordinate

system. We thus labeled the basis vectors with lower indices, and showed that they transform

via the inverse matrix. This notation ensured that the invariant object constructed by

summing over the components and basis vectors was left unchanged by the transformation.

But we can think of other objects whose transformation law will be the same (rather

than the opposite) to the transformation law of the basis vectors. Once we set up a vector

space, we can always define another associated vector space, of equal dimension, known as
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the dual vector space. If Tp is a tangent vector space, the dual vector space to it, known

as the cotangent space is normally denoted by T ∗

p .

The dual vector space (or dual space, for short), consists of all linear maps from the

original vector space to the real numbers. In math lingo, if ω ∈ T ∗

p is a dual vector, then it

acts as a map such that:

ω(aV + bW ) = aω(V ) + bω(W ) ∈ R , (34)

where V , W are vectors and a, b are real numbers. Interestingly, these maps form a vector

space themselves; thus, if ω and η are dual vectors, we have

(aω + bη)(V ) = aω(V ) + bη(V ) . (35)

We can now introduce a set of basis dual vectors, which we will denote by θ̂(ν). The

requirement from these vectors to form a basis is

θ̂(ν)(ê(µ)) = δνµ . (36)

Thus, similarly to the “normal” vectors, we can write every dual vector in terms of its

components, which now will be labeled with lower indices:

ω = ωµθ̂
(µ) . (37)

Elements of the dual space T ∗

p are called covariant vectors. (Again, the ’co-’ originates

from the fact that the transformation law of their components is similar to the transformation

law of the basis vectors). Another name for dual vectors is one-forms, although we will

likely not have time to discuss it any further.

The component notation leads to a simple way of writing the action of a dual vector on

a vector:
ω(V ) = ωµV

ν θ̂(µ)(ê(ν))

= ωµV
νδµν

= ωµV
µ ∈ R .

(38)

This is why it is rarely necessary to write the basis vectors (and basis dual vectors) explicitly;

the components do all of the work. The form of Equation 38 also suggests that we can think

of vectors as linear maps on dual vectors, by defining

V (ω) ≡ ω(V ) = ωµV
µ . (39)

Therefore, the dual space to the dual vector space is the original vector space itself.
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For completeness, we can derive the transformation properties of dual vectors in a similar

way to the derivation for vectors. The transformation law of the components are given by

ωµ′ = Λµ′

νων , (40)

and for basis dual vectors,

θ̂(ρ
′) = Λρ′

σθ̂
(σ) . (41)

This is just what we would expect from index placement; the components of a dual vector

transform under the inverse transformation of those of a vector. Note that this ensures that

the scalar (Equation 38) is invariant under Lorentz transformations, just as it should be.

Examples.

(1) Maybe the easiest way to think of dual vectors is of row vectors, as opposed to

“normal” vectors which are column vectors. Consider an n-dimensional space. We can write

V =



















V 1

V 2

·
·
·
V n



















, ω = (ω1 ω2 · · · ωn) . (42)

The action of a dual vector on a vector (Equation 38) is ordinary multiplication,

ω(V ) = (ω1 ω2 · · · ωn)



















V 1

V 2

·
·
·
V n



















= ωiV
i . (43)

(2) Another familiar example occurs in quantum mechanics, where vectors in the Hilbert

space are represented by kets, |ψ〉. In this case the dual space is the space of bras, 〈φ|, and
the action gives the number 〈φ|ψ〉. (This is a complex number in quantum mechanics, but

the idea is precisely the same.)

(3) The gradient of a scalar function φ, denoted by dφ is a set of partial derivatives

with respect to the space-time coordinates,

dφ =
∂φ

∂xµ
θ̂(µ) . (44)
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We can use the conventional chain rule often used to transform partial derivatives, to deter-

mine the transformation rule of dual vector components:

∂φ

∂xµ′
= ∂xµ

∂xµ′
∂φ
∂xµ

= Λµ′
µ ∂φ
∂xµ ,

(45)

where we have used Equations 9 and 31 to relate the Lorentz transformation to the coordi-

nates. The fact that the gradient is a dual vector leads to the following shorthand notations

for partial derivatives:
∂φ

∂xµ
≡ ∂µφ ≡ φ, µ . (46)

(Very roughly speaking, “while xµ has an upper index, when it is in the denominator of a

derivative it implies a lower index on the resulting object.”)

Note that when we operate the dual vector of a gradient dφ on a vector V = V µê(µ)
defined along a curve, V µ = dxµ/dλ, we obtain the natural result of an ordinary derivative

of the function φ along the curve,

∂µφ
∂xµ

∂λ
=
dφ

dλ
. (47)

3.5. Tensors

A straightforward generalization of vectors and dual vectors is the notion of a tensor.

Formally, just as a dual vector is a linear map from vectors to R, a tensor T of type (or

rank) (k, l) is a multilinear map from a collection of (k) dual vectors and (l) vectors to R.

Multilinearity means that the tensor acts linearly in each of its arguments. From this point

of view, a scalar is a type (0, 0) tensor, a vector is a type (1, 0) tensor, and a dual vector is

a type (0, 1) tensor.

Transformation law of tensors. Basically, a tensor of rank (k, l) have k contravariant

indices and l covariant indices, with the corresponding Lorentz transformation properties.

Thus, the transformation law of tensors is

T µ′

1
···µ′

k
ν′
1
···ν′

l
= Λµ′

1
µ1
· · ·Λµ′

kµk
Λν′

1

ν1 · · ·Λν′
l

νlT µ1···µk
ν1···νl . (48)

In other words, each upper index gets transformed like a vector, and each lower index gets

transformed like a dual vector.

Examples. An extremely important (0, 2) tensor which we have already encountered

- although without calling it in this name - is the metric tensor, ηµν (see Equation 6). The
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action of the metric on two vectors is so useful that it gets its own name, the inner product

(or scalar product):

η(V,W ) = ηµνV
µW ν = V ·W = W · V

= −V 0W 0 + V xW x + V yW y + V zW z ,
(49)

where the last equality in the first line originates from the symmetry properties of ηµν .

Just as with the conventional Euclidean dot product, we will refer to two vectors whose

dot product vanishes as orthogonal. Since the dot product is a scalar, it is left invariant

under Lorentz transformations; therefore the basis vectors of any Cartesian inertial frame,

which are chosen to be orthogonal by definition, are still orthogonal after a Lorentz trans-

formation.

The norm of a vector is defined to be inner product of the vector with itself:

V 2 ≡ ηµνV
µV ν = VνV

ν (50)

Unlike in Euclidean space, this number is not positive definite:

if ηµνV
µV ν is







< 0 , V µ is timelike

= 0 , V µ is lightlike or null

> 0 , V µ is spacelike .

(A vector in Minkowski space can have zero norm without being the zero vector.) You

will notice that the terminology is the same as that which we earlier used to classify the

relationship between two points in spacetime; it’s no accident, of course, and we will go into

more detail later.

Clearly, the norm of a vector, being a scalar is Lorentz invariant. We can check this

directly:

V ′2 ≡ ηµ′ν′V
µ′

V ν′ = ηµ′ν′Λ
µ′

ρΛ
ν′
σV

ρV σ = ηρσV
ρV σ = V 2 (51)

In an identical way, the scalar product between two vectors is also conserved.

(2) Another tensor is the Kronecker delta δµν , of type (1, 1), whose components are

simply

δµν ≡
{

1 , µ = ν

0 , µ 6= ν .

(3) The inverse metric tensor ηµν , is a type (2, 0) tensor defined as the inverse of the

metric:

ηµνηνρ = ηρνη
νµ = δµρ . (52)
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In fact, as you can check, the inverse metric has exactly the same components as the metric

itself. (This is only true in flat space-time in Cartesian coordinates, and will fail to hold in

more general situations.)

(4) The Levi-Civita tensor is a (0, 4) tensor defined by

ǫµνρσ =







+1 if µνρσ is an even permutation of 0123

−1 if µνρσ is an odd permutation of 0123

0 otherwise .

(53)

Here, a “permutation of 0123” is an ordering of the numbers 0, 1, 2, 3 which can be obtained

by starting with 0123 and exchanging two of the digits; an even permutation is obtained by

an even number of such exchanges, and an odd permutation is obtained by an odd number.

Thus, for example, ǫ0321 = −1.

3.5.1. Manipulating tensors

Raising and lowering indices. The example of the norm (Equation 50) presented

above, is an example of the use of the metric tensor to lower indices. Indeed, both the metric

and inverse metric can be used to raise and lower indices on tensors. That is, given a

tensor T αβ
γδ, we can use the metric to define new tensors which we choose to denote by the

same letter T :
T αβµ

δ = ηµγT αβ
γδ ,

Tµ
β
γδ = ηµαT

αβ
γδ ,

Tµν
ρσ = ηµαηνβη

ργησδT αβ
γδ ,

(54)

and so forth. Notice that raising and lowering does not change the position of an index

relative to other indices, and also that “free” indices (which are not summed over) must be

the same on both sides of an equation, while “dummy” indices (which are summed over)

only appear on one side. As an example, we can turn vectors and dual vectors into each

other by raising and lowering indices:

Vµ = ηµνV
ν

ωµ = ηµνων .
(55)

This explains why the gradient in three-dimensional flat Euclidean space is usually thought

of as an ordinary vector, even though we have seen that it arises as a dual vector; in Euclidean

space (where the metric is diagonal with all entries +1) a dual vector is turned into a vector

with precisely the same components when we raise its index. You may then wonder why we

have belabored the distinction at all. One simple reason, of course, is that in a Lorentzian
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spacetime the components are not equal:

ωµ = (−ω0, ω1, ω2, ω3) . (56)

In a curved spacetime, where the form of the metric is generally more complicated, the dif-

ference is rather more dramatic. But there is a deeper reason, namely that tensors generally

have a “natural” definition which is independent of the metric. Even though we will always

have a metric available, it is helpful to be aware of the logical status of each mathematical

object we introduce. The gradient, and its action on vectors, is perfectly well defined re-

gardless of any metric, whereas the “gradient with upper indices” is not. (As an example,

we will eventually want to take variations of functionals with respect to the metric, and will

therefore have to know exactly how the functional depends on the metric, something that is

easily obscured by the index notation.)

Contraction. The operation of contraction turns a (k, l) tensor into a (k − 1, l − 1)

tensor, by summing over one upper and one lower index:

Sµρ
σ = T µνρ

σν . (57)

The result is a well-defined tensor. Note that it is only permissible to contract one upper

and one lower indices (as opposed to two upper or two lower indices). Further, note that

the order of indices does matter - in general,

T µνρ
σν 6= T µρν

σν . (58)

While this is a very (perhaps too) brief introduction to tensors, we will stop here and

may return to this later, if needed.

Having completed this abstract mathematical part, let us go now to kinematic in a flat

space-time.

4. Special relativistic kinematics

4.1. Four velocity, acceleration and force

Let us now discuss the motion of a particle in space-time. In three-dimensions we are

used to think of the position of a particle xi as a function of time t in a particular inertial

frame. However, in four-dimensions it is easier to think at the space-time location of the

moving particle as describing a curve in space-time. This curve is called world line. (Figure

3).
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Fig. 3.— The space-time location of an object is represented by a dot in 4-dimensions space-

time. As the object changes its position, its trajectory forms a line, known as world line

of the object.

The description of the motion is done by giving all four-coordinates of the particle, xµ

as a function of a single parameter, σ, which varies along the world line. For each value of

σ, xµ = xµ(σ) determine a point along the curve. While we can have many choices for σ, a

natural choice is the proper time, τ . Thus, the world line is described by xµ = xµ(τ).

We can now define the four-velocity, Uµ by:

Uµ ≡ dxµ

dτ
. (59)

Note that as all vectors, Uµ is defined at a single point along the world line. The proper

time dτ was defined in Equation 21 ((∆τ)2 = − 1
c2
ηµν∆x

µ∆xν),

dτ =
√

dt2 − (dx)2/c2 = dt

√

1− (dx/dt)2

c2
= dt

√

1− β2 (60)

We can write Equation 59 in components,

U0 = d(ct)√
1−β2dt

= c√
1−β2

= γc

U i = dxi√
1−β2dt

= 1√
1−β2

dxi

dt
= γvi = γβic

(61)

(Note that in many textbooks, at this point and even earlier, c is taken to be 1, and is

omitted from the equations. I keep it here for clarity).

The norm of the four velocity is

U2 ≡ UµU
µ = ηµνU

νUµ = ηµν
dxµ

dτ

dxν

dτ
=
ηµνdx

µdxν

dτ 2
= −c2 (62)
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where we used Equation 21.

We can further define the four acceleration by

aµ ≡ dUµ

dτ
(63)

and the relativistic four-force by

fµ = maµ = m
dUµ

dτ
. (64)

This definition replaces Newton’s second law of motion. It has all the necessary features:

it reduces to Newton’s familiar law at any inertial frame where the speed of the particle

is much smaller than c; it satisfies the principle of relativity; and in the absence of force,

dUµ/dτ = 0, and thus Newton’s first law holds. The constant m is called the particle’s rest

mass.

Interestingly, the four-acceleration is perpendicular to the four velocity:

aµUµ = ηµν
dUµ

dτ
Uν =

1

2

d(ηµνU
µUν)

dτ
=

1

2

d(−c2)
dτ

= 0. (65)

Equation 65 simply implies that there are only three independent equations of motion, as in

Newtonian mechanics; the fourth is being determined.

4.2. Energy and momentum (massive particles)

A natural extension is to define the four-momentum of a massive particle by

pµ ≡ m
dxµ

dτ
= mUµ (66)

Using Equations 61 and 62, we find immediately that

p2 ≡ pµp
µ = −m2c2;

p0 = γmc;

pi = γβimc = γmvi.

(67)

In the limit of small velocities, v ≪ c or βi ≪ 1, γ ≃ 1 + β2/2, and one gets

p0 ≃ mc+ 1
2
mv2

c

pi ≃ mvi
(68)
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The spatial term in Equation 68 is the Newtonian momentum. If we multiply the time

component of p by c, we get

cp0 ≃ mc2 +
1

2
mv2. (69)

The second term is immediately recognized as the kinetic energy of a particle, while the first

term is a quantity of units of energy, which Einstein referred to as the “rest mass energy” of

a massive particle. The term cp0 is thus simply the energy of a particle. This is why the

four-momentum is also called energy-momentum four vector, whose components in any

inertial frame are given by Equation 67.

Using Equation 67, we can write

p0 ≡ E

c
=
(

(pi)2 +m2c2
)1/2

. (70)

4.3. Massless particles

So far we considered massive particles, that move at speed v < c. Consider now massless

particles (e.g., photons), that travel at speed c. Thus, if the photon travels in the x direction,

x = ct. We cannot use the proper time dτ as a parameter along a world line of a light ray,

since dτ between any points in it is always zero ! (see Equation 60).

In this case, we have to choose a different, arbitrary parameter (let us denote it by λ)

instead of τ as a parameter along the world line of the photon. The four-velocity U is thus

defined by Uµ = dxµ/dλ.

The four velocity is a null vector, namely

U2 = 0 (71)

In the absence of forces acting on a photon, the equation of motion is

dU

dλ
= 0 (72)

(compare to the equation of motion of a massive particle, Equation 63).

As was shown by Einstein himself, the energy of a photon E is connected to its angular

frequency ω by

E = ~ω, (73)

where ~ is Planck’s constant.
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We can now use Equation 70 with m = 0, to write the momentum of a photon, pi =

E/c = ~~k, where ~k is the wave vector of a photon.

Thus, the photon four-momentum is

pµ = (~ω/c, ~~k). (74)

Clearly, p2 = pµp
µ = 0.

4.4. Many particle system: the energy momentum tensor

So far we considered a single particle moving is space-time. For a single particle, pµ

provides a complete description of its energy and momentum. However, for extended systems

it is necessary to go further and define the energy-momentum tensor (sometimes called

the stress-energy tensor), T µν . (Hopefully, you have already encountered this tensor in your

studies of electromagnetism, solid state physics or fluid dynamics !). This is a symmetric

(2, 0) tensor which tells us all we need to know about the energy-like aspects of a system:

energy density, pressure, stress, and so forth.

Roughly speaking, one can think of T µν as “the flux of four-momentum pµ across a

surface of constant xν”. To make this more concrete, let’s consider the very general category

of matter which may be characterized as a fluid — a continuum of matter described by

macroscopic quantities such as temperature, pressure, entropy, viscosity, etc. In fact this

definition is so general that it is of little use. In general relativity essentially all interesting

types of matter can be thought of as perfect fluids, from stars to electromagnetic fields to

the entire universe. Schutz defines a perfect fluid to be one with no heat conduction and no

viscosity, while Weinberg defines it as a fluid which looks isotropic in its rest frame; these

two viewpoints turn out to be equivalent. Operationally, you should think of a perfect fluid

as one which may be completely characterized by its pressure and density.

4.4.1. Dust

To understand perfect fluids, let’s start with the even simpler example of dust. Dust

is defined as a collection of particles at rest with respect to each other, or alternatively

as a perfect fluid with zero pressure. Since the particles all have an equal velocity in any

fixed inertial frame, we can imagine a “four-velocity field” Uµ(x) defined all over spacetime.

(Indeed, its components are the same at each point.) Define the number-flux four-vector
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to be

Nµ = nUµ , (75)

where n is the number density of the particles as measured in their rest frame.

When viewed from an arbitrary frame (not necessarily the one in which the dust is

at rest), N0 is the number density of particles, while N i is the flux of particles in the xi

direction. In the frame in which the dust is at rest, the number flux four vector is (n, 0, 0, 0).

Let’s now imagine that each of the particles have the same mass m. Then in the rest

frame the energy density of the dust is given by

ρ = nmc2 . (76)

By definition, the energy density completely specifies the dust. But ρ only measures

the energy density in the rest frame; what about other frames? We notice that both n and

mc2 are 0-components of four-vectors in their rest frame; specifically, Nµ = (n, 0, 0, 0) and

pµ = (mc, 0, 0, 0). We can thus think of ρ as the (0, 0) component of a more general tensor,

as measured in the dust rest frame. This leads us to define the energy-momentum tensor for

dust:

T µν
dust = pµN ν = nmUµUν = ρUµUν , (77)

where ρ is defined as the energy density in the rest frame.

The conservation of particle number can be written in a very elegant way using the

gradient operator (see Equation 46),

∂µN
µ ≡ ∂Nµ

∂xµ
= 0. (78)

Using Equation 61, we can write Equation 78 explicitly,

∂(γn)
∂t

+ ∂(γn~v)
∂~x

= 0,
∂(γn)
∂t

+∇(γn~v) = 0.
(79)

This equation reduces to the classical continuity equation in the limit γ → 1, and is the

relativistic generalization of it. When multiplied by the charge q, Equation 78 represents

charge conservation.

4.4.2. Fluids

Having mastered dust, more general perfect fluids are not much more complicated.

Remember that “perfect” can be taken to mean “isotropic in its rest frame.” This in turn
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means that T µν is diagonal — there is no net flux of any component of momentum in an

orthogonal direction. Furthermore, the nonzero spacelike components must all be equal,

T 11 = T 22 = T 33. The only two independent numbers are therefore T 00 and one of the T ii;

we can choose to call the first of these the energy density ρ, and the second the pressure

p. (Sorry that it’s the same letter as the momentum.) The energy-momentum tensor of a

perfect fluid therefore takes the following form in its rest frame:

T µν =









ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p









. (80)

We now need to generalize this formula to any frame, in which the fluid is not necessarily

at rest. For dust we had T µν = ρUµUν , so we might begin by guessing (ρ+ p)UµUν , which

gives








ρ+ p 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0









. (81)

To get the answer we want we must therefore add








−p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p









. (82)

Fortunately, this has an obvious covariant generalization, namely pηµν . Thus, the general

form of the energy-momentum tensor for a perfect fluid is

T µν = (ρ+ p)UµUν + pηµν . (83)

This is an important formula for applications such as stellar structure and cosmology.

Besides being symmetric, T µν has the even more important property of being con-

served. In this context, conservation is expressed as the vanishing of the “divergence”:

∂µT
µν = 0 . (84)

This is a set of four equations, one for each value of ν. The ν = 0 equation corresponds to

conservation of energy, while ∂µT
µk = 0 expresses conservation of the kth component of the

momentum. We are not going to prove this in general; the proof follows for any individual

source of matter from the equations of motion obeyed by that kind of matter. In fact,

one way to define T µν would be “a (2, 0) tensor with units of energy per volume, which is

conserved.”
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4.5. Maxwell’s equations

(This section is given for completeness. Unfortunately, I don’t think that we will have

time to discuss it in class.)

Let us have a new look at Maxwell’s equations of electrodynamics. In 19th-century

notation, these are
∇× ~B − ∂t ~E = 4π ~J

∇ · ~E = 4πρ

∇× ~E + ∂t ~B = 0

∇ · ~B = 0 .

(85)

Here, ~E and ~B are the electric and magnetic field 3-vectors, ~J is the current, ρ is the charge

density (don’t confuse with the energy density introduced in Equation 75), and ∇× and

∇· are the conventional curl and divergence. These equations are invariant under Lorentz

transformations, of course; that’s how the whole business got started. But they don’t look

obviously invariant; our tensor notation can fix that. Let’s begin by writing these equations

in just a slightly different notation,

ǫijk∂jBk − ∂0E
i = 4πJ i

∂iE
i = 4πJ0

ǫijk∂jEk + ∂0B
i = 0

∂iB
i = 0 .

(86)

In these expressions, spatial indices have been raised and lowered with abandon, without

any attempt to keep straight where the metric appears. This is because δij is the metric on

flat 3-space, with δij its inverse (they are equal as matrices). We can therefore raise and

lower indices at will, since the components don’t change. Meanwhile, the three-dimensional

Levi-Civita tensor ǫijk is defined just as the four-dimensional one, although with one fewer

index. We have replaced the charge density by J0; this is legitimate because the density and

current together form the current 4-vector, Jµ = (ρ, J1, J2, J3).

We can now define the electromagnetic field strength tensor, Fµν , by

Fµν =









0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0









= −Fνµ . (87)

Using this definition, we can now get a completely tensorial 20th-century version of Maxwell’s

equations. Begin by noting that we can express the field strength with upper indices as

F 0i = Ei

F ij = ǫijkBk .
(88)
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(To check this, note for example that F 01 = η00η11F01 and F
12 = ǫ123B3.) Then the first two

equations in (86) become

∂jF
ij − ∂0F

0i = 4πJ i

∂iF
0i = 4πJ0 .

(89)

Using the antisymmetry of F µν , we see that these may be combined into the single tensor

equation

∂µF
νµ = 4πJν . (90)

A similar line of reasoning, which is left as an exercise to you, reveals that the third and

fourth equations in (86) can be written

∂[µFνλ] = 0 , (91)

where the square bracket symbol [] denotes antisymmetrization of the indices, namely sum-

ming over all index permutations when reversing the sign for an odd permutation. For

example,

T[µνρ]σ =
1

6
(Tµνρσ − Tµρνσ + Tρµνσ − Tνµρσ + Tνρµσ − Tρνµσ) . (92)

The four traditional Maxwell equations are thus replaced by two, thus demonstrating

the economy of tensor notation. More importantly, however, both sides of Equations 90 and

91 manifestly transform as tensors; therefore, if they are true in one inertial frame, they must

be true in any Lorentz-transformed frame. This is why tensors are so useful in relativity

— we often want to express relationships without recourse to any reference frame, and it is

necessary that the quantities on each side of an equation transform in the same way under

change of coordinates. As a matter of jargon, we will sometimes refer to quantities which

are written in terms of tensors as covariant (which has nothing to do with “covariant” as

opposed to “contravariant”). Thus, we say that Equations 90 and 91 together serve as the

covariant form of Maxwell’s equations, while Equations 85 or 86 are non-covariant.

A final aside: we have already mentioned that in general relativity gravitation does not

count as a “force.” As a related point, the gravitational field also does not have an energy-

momentum tensor. In fact it is very hard to come up with a sensible local expression for the

energy of a gravitational field; a number of suggestions have been made, but they all have

their drawbacks. Although there is no “correct” answer, it is an important issue from the

point of view of asking seemingly reasonable questions such as “What is the energy emitted

per second from a binary pulsar as the result of gravitational radiation?”
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